Monotonic Change Point Estimation in the Parameters of Polynomial Profile Model

Document Type: Research Paper

Authors

Faculty of Industrial Engineering, Tarbiat Modares University, Tehran, Iran

Abstract

In this paper, a maximum likelihood estimator is developed to estimate isotonic change point in the parameters of a polynomial profile in phase II. In addition, performance of the proposed estimator is compared to the performance of the step change point estimator, under increasing change types using simulation study. Accuracy and the precision of the estimators are considered as the performance measures in this paper. Simulation results show that the proposed estimator has an acceptable performance in terms of the accuracy and precision of the estimations. The proposed estimator also does not require any awareness about the change type, and its only assumption is that changes occur in an increasing manner. This is the advantage of the proposed estimator over the step change point estimator.  

Keywords

Main Subjects


1-       Kang, L. and Albin, S. (2000). “On-line Monitoring When the Process Yields a Linear Profile”, Journal of Quality Technology, Vol. 32, No. 4, PP. 418– 426.

2-       Mahmoud, M. A. and Woodall, W. H. (2004). “Phase I analysis of linear profiles with calibration applications”, Technometrics, Vol. 46, No. 4, PP. 380– 391.

3-       Kim, K., Mahmoud, M. A., and Woodall, W. H. (2003). “On the monitoring of linear profiles”, Journal of Quality Technology, Vol. 35, No. 3, PP. 317- 328.

4-       Mahmoud, M. A., Parker, P. A., Hawkins, M. D. and Woodall, W. H. (2007). “A change point method for linear profile data”, Quality and Reliability Engineering International, Vol. 23, No. 2, PP. 247– 268.

5-       Yeh, A. and Zerehsaz, Y. (2013). “Phase I control of simple linear profiles with individual observations”, Quality and Reliability Engineering International, Vol. 29, No. 6, PP. 829- 840.

6-       Zou, C., Zhang, Y. and Wang, Z. (2006). “Control chart based on change-point model for monitoring linear profiles”, IIE Transactions, Vol. 38, No. 12, PP. 1093–1110.

7-       Zou, C., Zhou, C., Wang, Z. and Tsung, F. (2007). “A self-starting control charts for linear profiles”, Journal of Quality Technology, Vol. 39, No. 4, PP. 364– 375.

8-       Saghaei, A., Mehrjoo, M. and Amiri, A. (2009). “A CUSUM-based method for monitoring simple linear profiles”, The International Journal of Advanced Manufacturing Technology, Vol. 45, No. 11-12, PP. 1252- 1260.

9-       Zarandi, M. F. and Alaeddini, A. (2010). “Using adaptive nero-fuzzy systems to monitor linear quality profiles”, Journal of Uncertain Systems, Vol. 4, No. 2, PP. 147-160.

10-   Mahmoud, M. A., Morgan, J. P. and Woodall, W. H. (2010). “The monitoring of simple linear regression profiles with two observations per sample”, Journal of Applied Statistics, Vol. 37, No. 8, PP. 1249– 1263.

11-   Hosseinifard, S. Z., Abdollahian, M. and Zeephongsekul, P. (2011). “Application of artificial neural networks in linear profile monitoring”, Expert Systems with Applications, Vol. 38, No. 5, PP. 4920–4928.

12-   Zhang, J., Li, Z. and Wang, Z. (2009). “Control chart based on likelihood ratio for monitoring linear profiles”, Computational Statistics and Data Analysis, Vol. 53, No. 4, PP. 1440- 1448.

13-   Farahani, E., Noorossana, R. and Koosha, M. (2014). “Profile monitoring in the presence of outliers”, The International Journal of Advanced Manufacturing Technology, Vol. 74, No. 1- 4, PP. 251- 256.

14-   Kazemzadeh, R. B., Noorossana, R. and Amiri, A. (2008). “Phase I monitoring of polynomial profiles”, Communications in Statistics—Theory and Methods, Vol. 37, No. 10, PP. 1671– 1686.

15-   Kazemzadeh, R. B., Noorossana, R. and Amiri, A. (2009). “Monitoring polynomial profiles in quality control applications”, The International Journal of Advanced Manufacturing Technology, Vol. 42, No. 7-8, PP. 703- 712.

16-   Kazemzadeh, R. B. and Amiri, A. (2010). “Phase II monitoring of autocorrelated polynomial profiles in AR (1) processes”, Scientia Iranica, Vol. 17, No. 1, PP. 12- 24.

17-   Amiri, A., Jensen, W. A. and Kazemzadeh, R. B. (2010). “A case study on monitoring polynomial profiles in the automotive industry”, Quality and Reliability Engineering International, Vol. 26, No. 5, PP. 509- 520.

18-   Samuel, T. R. and Pignatiello, J. J. (1998). “Identifying the time of a change in a poisson rate parameter”, Quality Engineering, Vol. 10, No. 4, PP. 673- 681.

19-   Pignatiello Jr, J. J., and Samuel, T. R. (2001). “Estimation of the change point of a normal process mean in SPC applications”, Journal of Quality technology, Vol. 33, No. 1, PP. 82– 95.

20-   Pignatiello Jr, J. J. and Samuel, T. R. (2001). “Identifying the time of a step change in the process fraction nonconforming”, Quality Engineering, Vol. 13, No. 3, PP. 357- 365.

21-   Perry, M. B., and Pignatiello Jr, J. J. (2010). “Identifying the time of step change in the mean of autocorrelated processes”, Journal of Applied Statistics, Vol. 37, No. 1, PP. 119- 136.

22-   Noorosana, R., Saghaei, A., Paynabar, K. and Abdi, S. (2009). “Identifying the period of a step change in high-yield processes”, Quality and Reliability Engineering International, Vol. 25, No. 7, PP. 875-883.

23-   Nedumaran, G., Pignatiello Jr, J. J. and Calvin, J. A. (2000). “Identifying the time of a step-change with x2 control charts”, Quality Engineering, Vol. 13, No. 2, PP. 153- 159.

24-   Perry, M. B. and Pignatiello Jr, J. J. (2011). “Estimating the time of step change with Poisson CUSUM and EWMA control charts”, International Journal of Production Research, Vol. 49, No. 10, 2857- 2871.

25-   Niaki, S. T. A. and Khedmati, M. (2014). “Step change-point estimation of multivariate binomial processes”, International Journal of Quality & Reliability Management, Vol. 31, No. 5, PP. 566- 587.

26-   Perry, M. B. and Pignatiello Jr, J. J. (2006). “Estimation of the change point of a normal process mean with a linear trend disturbance in SPC”, Quality Technology and Quantitative Management, Vol. 3, No. 3, PP. 325- 334.

27-   Perry, M. B., Pignatiello Jr, J. J. and Simpson J. R. (2006). “Estimating the change point of a poisson rate parameter with a linear trend disturbance”, Quality and Reliability Engineering International, Vol. 22, No. 4, PP. 371- 384.

28-   Amiri, A. and Khosravi, R. (2012). “Estimating the change point of the cumulative count of a conforming control chart under a drift”, Scientia Iranica, Vol. 19, No. 3, PP. 856- 861.

29-   Perry, M. B., Pignatiello Jr, J. J. and Simpson, J. R. (2007). “Estimating the change point of the process fraction non-conforming with a monotonic change disturbance in SPC”, Quality and Reliability Engineering International, Vol. 23, No. 3, PP. 327- 339.

30-   Noorossana, R. and Shadman, A. (2009). “Estimating the change point of a normal process mean with a monotonic change”, Quality and Reliability Engineering International, Vol. 25, No. 1, PP.79- 90.

31-   Amiri, A. and Khosravi, R. (2013). “Identifying time of a monotonic change in the fraction nonconforming of a high-quality process”, The International Journal of Advanced Manufacturing Technology, Vol. 68, No. 1- 4, PP. 547- 555.

32-   Niaki, S. T. A. and Khedmati, M. (2014). “Monotonic change-point estimation of multivariate Poisson processes using a multi-attribute control chart and MLE”, International Journal of Production Research, Vol. 52, No. 10, PP. 2954- 2982.

33-   Best, M. J. and Chakravarti, N. (1990). “Active set algorithms for isotonic regression; a unifying framework”, Mathematical Programming, Vol. 47, No. 1- 3, PP. 425– 439.

34-   Kazemzadeh, R. B., Noorossana, R. and Ayoubi, M. (2015). “Change point estimation of multivariate linear profiles under linear drift”, Communication in Statistics-Simulation & Computation, Vol. 44, No. 6, PP. 1570- 1599.