Scheduling in two-machine robotic cells assuming tool switching time and dependency of the processing time ‎

Document Type: Research Paper


1 Department of Industrial Engineering, Islamic Azad University, Bonab Branch, Bonab,Iran

2 Department of Industrial Engineering, University of Kurdistan


A set of different parts are produced by robotic cells as cyclic and each part requires a ‎number of tools on each machine in order to be completed; if the tools required for the part are not ‎available in tool magazine of the machines, the part process will be completed by switching tools; ‎which would be time-consuming. As the tool magazines of machines have limited capacity, the ‎method of tools switching is a decision making problem. Furthermore; the arrival sequencing of ‎different parts to the cell affects the frequency and number of tools switching. In addition, it has ‎been assumed the processing time of each part on the second machine depends on the quality of ‎the part process on the first machine, and as the quality of parts process depends on the tools life of ‎the first machine, subsequently, the processing time of the second machine acts as a function of ‎tools life on the first machine. Based on this procedure, the cycle time in the possible movement ‎policies of the two-machine robotic cells has been calculated, followed by presenting the ‎mathematical programming model for minimizing the cycle time in that cell. Then, the effects of ‎the time spent for switching the tools as well as the dependence of processing time have been ‎analyzed as the two new assumptions on the cycle time, and the mathematical programming model ‎is solved by using GAMS and genetic algorithm.‎


Main Subjects

  1. Foumani, M., Smith Miles, K., and Gunawan, I., (2017). “Scheduling of Two-Machine Robotic Rework Cells: In-Process, Post-Process and In-Line Inspection Scenarios”, Robotics and Autonomous Systems, No. 91, PP. 210-225.
  2. Gultekin, H., Tula, A., and Akturk, M. S., (2016). “Automated Robotic Assembly Line Design with Unavailability Periods and Tool Changes”, European Journal of Industrial Engineering, Vol. 10, No. 4, PP. 499-526.
  3. Tang, C. S., and Denardo, E. V., (1988). “Models Arising From a Flexible Manufacturing Machine, Part I: ‌Minimization of the ‌Number of Tool Switches”, Operations Research, Vol. 36, No. 5, PP. 767-777.
  4. Sethi, S. P., Sriskandarajah, C., Sorger, G., Blazewicz, J., and Kubiak, W., (1992). “Sequencing of Parts and Robot Moves in a Robotic Cell”, International Journal of Flexible Manufacturing Systems, Vol. 4, No. 3, PP. 331-358.
  5. Shirazi, R‌.,  and  ‌Frizelle, G., (2001). “Minimizing the Number of Tool Switches on a Flexible Machine: An ‌Empirical Study”, ‌International Journal of Production Research, Vol. 39, No. 15, PP. 3547-3560.
  6. Crama, Y., Oerlemans, A. G., and Spieksma, F. C., (1996). Minimizing the Number of Tool Switches ‌on a Flexible Machine: ‌Springer.
  7. Privault, C., and Finke, G., (1995). “Modelling a Tool Switching Problem‌ ‌on a Single NC-Machine”, ‌Journal of Intelligent ‌Manufacturing, Vol. 6, No. 2, PP. 87-94.
  8. Hertz, A., Laporte, G., Mittaz, M., and Stecke, K. E., (1998). “Heuristics for Minimizing Tool Switches When‌ ‌Scheduling Part Types ‌on a Flexible Machine”, IIE Transactions, Vol. 30, No. 8, PP. 689-694.
  9. Al-Fawzan, M., and Al-Sultan, K., (2003). “A Tabu Search Based Algorithm for Minimizing the ‌Number of Tool Switches on a ‌Flexible Machine”, Computers and Industrial Engineering, Vol. 44, No. 1, PP. 35-47.
10. Akturk, M. S., Ghosh, J. B., and Gunes, E. D., (2003). “Scheduling with Tool Changes to Minimize ‌Total Completion Time: A Study of ‌Heuristics and Their Performance”, Naval Research Logistics (NRL), Vol. 50, No. 1, PP. 15-30‌.

11. Laporte, G., Salazar-Gonzalez, J. J., and Semet, F., (2004). “Exact Algorithms for the Job Sequencing ‌and Tool Switching Problem”, ‌IIE Transactions, Vol. 36, No. 1, PP. 37-45. ‌

12. Zhou, B. H., Xi, L. F‌., and ‌Cao, Y. S., (2005). “A Beam-Search-Based Algorithm for the Tool Switching ‌Problem on a Flexible ‌Machine”, The International Journal of Advanced Manufacturing ‌Technology, Vol. 25, No. 9 and 10, PP. 876-882.

13. Crama, Y., Moonen, L. S., Spieksma, F. C., ans Talloen, ‌E., (2007). “The Tool Switching Problem Revisited”, ‌European Journal of ‌Operational Research, Vol. 182, No. 2, PP. 952-957.

14. Konak, A., Kulturel Konak, S., and Azizoğlu, M., (2008). “Minimizing the Number of Tool Switching Instants ‌in Flexible ‌Manufacturing Systems”, International Journal of Production Economics, Vol. 116, No. 2, PP. 298-307.

15. Yanasse, H. H., Rodrigues, R. D. C. M., and Senne, E. L. F., (2009). “An Enumeration Algorithm Based ‌on Partial Ordering to Solve ‌the Minimization of Tool Switches Problem”, Gestão and Produção, Vol. 16, No. 3, PP. 370-381.

16. Amaya, J. E., Cotta, C., and Fernández Leiva, A. J., (2012). “Solving the Tool Switching Problem with ‌Memetic Algorithms”, ‌Artificial Intelligence for Engineering Design, Analysis and Manufacturing, Vol. 26, No. 02, PP. 221-235.

17. Catanzaro, D., Gouveia, L., and Labbé, M., (2015). “Improved Integer Linear Programming Formulations for ‌the Job Sequencing ‌and Tool Switching Problem”, European Journal of Operational Research, Vol. 244, No. 3, PP. 766-777. ‌

18. Chaves, A. A., Lorena, L. A. N., Senne, E. L. F., and Resende, M. G., (2016). “Hybrid Method with CS and BRKGA Applied to the Minimization of Tool Switches Problem”, Computers and Operations Research, No. 67, PP.174-183.

19. Cheng, T. E., Ding, Q., and Lin, B. M., (2004). “A Concise Survey of Scheduling with Time-Dependent Processing Times”, European Journal of Operational Research, Vol. 152 No. 1, PP. 1-13.

20. Alidaee, B., and Womer, N. K., (1999). “Scheduling with Time Dependent Processing Times: Review and Extensions”, Journal of the Operational Research Society, Vol. 50, No. 7, PP. 711-720.

21. Sethi, S. P., Sriskandarajah, C., Sorger, G., Blazewicz, J., and Kubiak, W., (1992). “Sequencing of Parts and ‌Robot Moves in a ‌Robotic Cell”, International Journal of Flexible Manufacturing Systems, Vol. 4, No. 3 and 4, PP. 331-358.

22. Zarandi, M. F., Mosadegh, H., and Fattahi, M., (2013). “Two-Machine Robotic Cell Scheduling Problem with ‌Sequence-‌Dependent Setup Times”, Computers and Operations Research, Vol. 40, No. 5, PP. 1420-1434.

23. Al-Ahmari, A., (2016). “Optimal Robotic Cell Scheduling with Controllers Using Mathematically Based Timed ‌Petri Nets”, ‌Information Sciences, No. 329, PP. 638-648. ‌

24. Gultekin, H., Akturk, M. S., and Karasan, O. E., (2006). “Cyclic Scheduling of a 2-Machine Robotic Cell with ‌Tooling Constraints”, ‌European Journal of Operational Research, Vol. 174, No. 2, PP. 777-796.

25. Abadi, I. K., and Gholami, S., (2009). Robot Movements in a Cyclic Multiple Part Type Three-‌Machine Flexible Robotic Cell ‌Problem, Transactions E: Industrial Engineering, Vol. 16, PP. 36-54.

26. Fathian, M., Kamalabadi, I. N., Heydari, M., and Farughi, H., (2011). “A Petri Net Model for Part Sequencing ‌and Robot Moves ‌Sequence in a 2-Machine Robotic Cell”, Journal of Software Engineering and ‌Applications, Vol. 4, No. 11, P. 603.

27. Crama, Y., Kats, V., Van De Klundert, J., and Levner, E., (2000). “Cyclic Scheduling in Robotic ‌Flowshops”, Annals of Operations ‌Research, Vol. 96, No. 1 and 4, PP. 97-124.

28. Farughi, H., Dolatabadiaa, M., Moradi, V., Karbasi, V., and Mostafayi, S. (2017). “Minimizing the Number of ‌Tool Switches in ‌Flexible Manufacturing Cells Subject to Tools Reliability Using Genetic Algorithm”, ‌Journal of Industrial and Systems ‌Engineering, Vol. 10, No. 1, PP.

29. Holland, J. H., (1992). Adaptation in Natural and Artificial Systems: ‌An Introductory Analysis with Applications to Biology, ‌Control, ‌and Artificial Intelligence, MIT Press‌.

30. Roy, R., (1990). A Primer on the Taguchi Method, Society of ‌Manufacturing Engineers, Ann Arbor, Mich, USA.

  1. اسمعیل‌نژاد ب. (2016). «مسئلة تشکیل سلول احتمالی با رویکرد نظریة صف و درنظرگرفتن قابلیت اطمینان»، نشریة مهندسی صنایع، دورة پنجاهم، سال دوم، صص 279-293.
  2. کهفی اردکانی، برزین‌پور ع و توکلی مقدم ر. (2012). «توسعة الگوریتم بهینه‌سازی انبوه ذرات جهت حل مدل یکپارچة برنامه‌ریزی تولید و سیستم تولید سلولی پویا»،  نشریة مهندسی صنایع، دورة چهل‌و‌ششم، شمارة 1، صص 77-89.