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Abstract  

Statistical variables are divided into two categories: nominal and ordinal, both of 

which have many uses. In some statistical process monitoring applications, the 

quality of a process or product is described by multiple ordinal quality 

characteristics, which is called ordinal multivariate process. An ordinal contingency 

table is used to show the relationships between these variables and is modeled on 

an ordinal log-linear model. In our manuscript, two new statistics including simple 

ordinal categorical and Generalized-p are developed for Phase II monitoring the 

ordinal log-linear model-based processes. The performance of the proposed 

statistics will be evaluated using some simulation studies and real-world numerical 

examples. The results show the advantages of a simple ordinal category control 

card. In addition, the performance of these statistics is accessed through sensitivity 

analysis of the row and column sizes of the contingency table. Meanwhile, a 

sensitivity analysis with three and four categorical factors is performed and similar 

results are obtained.  
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Introduction  
 

Some processes, known as multivariate ordinals, include multiple ordinal factors using a 

multivariate categorical chart based on an ordinal log-linear model. Two types of log-linear 

models, including the nominal log-linear model (NMLLM) and the ordered log-linear model 

(OLLM), are designed to correlate expected numbers of multivariate categorical characteristics 

with two or more control factors. In SPM, contingency tables are used for simultaneous 

monitoring of multivariate category processes [1]. In addition, OLLM is used to show the 

relationship between ordinal factors and their corresponding observations in contingency table 

(OCT) cells. For example, the independent hypothesis with 2×n OCT are tested and odds ratios 

for several conditions are calculated by Subramanyam and Rao [2]. The category Pearson Kai-

square have been developed in a three-way contingency table under an orthogonal multinomial 

distribution [3]. Zafar [4] OLLM was used in conjunction with correspondence analysis in the 

pharmaceutical industry to predict opiates in the drug detection process. Yamamoto and 

Morakami [5] proposed a model for square OCT. In this research, the assumption of unbalanced 
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normal distribution was also considered which was applied for caries of the teeth. Model for 

OCT analyzing by considering linear effect, rows, columns and concurrent consequence [6].  

Soleymanian et al. [7] proposed Phase II monitoring of the binary logistic regression profiles 

based on four approaches including T2, Multivariate Exponentially Weighted Moving Average 

(MEWMA), Likelihood Ratio Test (LRT) and LRT/EWMA. Atashgar [8] provided a review 

paper on the multivariate processes monitoring methods based on the artificial neural network. 

In this paper, analytical analyses based on some criteria including strength and weakness as 

well as the efficiency comparing of the existed methods is done. Zolfaghari and Amiri [9] 

presented two-stage multivariate attribute based process monitoring in Phase II. To this aim, 

three methods including Exponentially Weighted Moving Average (EWMA) and DA (EWMA-

DA) and P-value-DA and MEWMA and T2 based on DA are used. Ghashghaei and Amiri [10] 

proposed two new control charts for Phase II monitoring and diagnosing of the multivariate 

multiple regression profiles. They used Max-MEWMA and Max-MCUSUM statistics for 

simultaneous monitoring of mean vector and covariance matrix and then diagnosed the 

variation of the process responsible for the out-of-control condition. 

Notice that, there is little research in OLLM/OCT-based processes monitoring in SPM. In 

this area, Zhen and Basawa [11] present a time-dependent contingency table called the 

categorical time series table. Ghoreishi and Alijani [12] proposed an approach to forecast the 

changing patterns of communication variables using a dynamic contingency table. Kieffer et al. 

[13] applied a generalized form of the contingency table proposed by Kijima and Matsui [14] 

to evaluate the effects of genetic attribute 10,000 patients on cancer occurrence. 

A Multivariate categorical approach was proposed by Yashchin [15] to monitor the MNP 

with sudden parameters using the generalized likelihood ratio test statistic in Phase II. The 

performance of the proposed approach is evaluated by using a real case study in a 

semiconductor production system. Li et al. [16] proposed a generalized likelihood ratio test 

(GLRT) for monitoring multivariate categorical processes in Phase II by applying the log-linear 

model. They developed the EWMA-GLRT to enhance the GLRT chart performance for small 

shifts in the log-linear model parameters. Li et al. [17] proposed an integrated multivariate 

spatial-sign test and EWMA scheme to monitor the shape parameters of the multivariate 

nonparametric processes in Phase II.  

A new multivariate categorical statistic based on binomial/multinomial was proposed by Li 

et al. [18] to monitor MNP by considering the correlation between categorical factors. Results 

showed that the proposed control scheme was robust to detect different shifts in Phase II. After 

that, Kamranrad et al. [1] proposed GLT statistics to monitor the MNP processes in Phase-II. 

Then, GLT is combined with an EWMA statistic to improve its performance in small and 

medium shifts. Kamranrad et al. [19] proposed Wald and Stuart score test methods to monitor 

the nominal contingency tables based processes in Phase-II. They presented EWMA-Wald and 

EWMA-Stuart score test statistics to better the performance of proposed control schemes in 

small and moderate shifts in the contingency table cells parameter. Kamranrad et al. developed 

two SLRT and F statistics for monitoring the log-linear based processes in Phase I. In this paper, 

the performance of the proposed control charts is compared with another -2LRT statistic [20]. 

In addition, they presented a change point estimation scheme to obtain the real time of the 

change in the process. Performance of the proposed schemes is evaluated under different shifts 

based on steps, drifts and the presence of outliers in the log-linear model parameters. Finally, 

to show the efficiency of the proposed control charts in the real world, a case study in health-

care based on a kidney patient’s data set is applied [21]. A simple ordinal categorical control 

chart for detecting location changes in univariate ordinal processes was proposed by Li et al. 

[22]. To put it another way, they presented a new control chart, in Phase-II, to monitor the 

ordinal logistic regression based processes.  
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A new EWMA control scheme to monitor the social network with multinomial categorical 

data has been developed by Perry [23]. This scheme could be useful to the organization’s 

stakeholders when interest lies in monitoring for shifts in the general health of the organization. 

Li et al. [24] presented a nonparametric KNN-ECUSUM control chart to monitor the 

multivariate processes by using mixed IC and OC data. Note that, this scheme is the machine 

learning based black-box control chart and it is utilized for dimension reduction to transform 

multivariate data into univariate data. Xiang et al. [25] proposed a new control scheme to 

monitor the multivariate categorical process with a sparse contingency table. To this aim, they 

combined the LASSO and Ridge methods to estimate the contingency table distribution and 

propose the useful EWMA chart.  

All the researches, as mentioned above, are related to the multivariate nominal process 

monitoring in both Phases I and II. However, there are little researches in multivariate processes 

monitoring with ordinal data in SPM. For instance, Wang et al. [26] proposed OLLM based 

methods monitoring statistics, including MOC and LMBM in Phase II. They showed that the 

MOC control chart outperforms the LMBM manage charts below one of a kind shifts in the 

parameters of OLLM. As it is clear from the literature, there is little research on monitoring the 

MOP. Besides, two control charts were proposed in Phase II called multivariate ordinal-normal 

statistic (MONS) and multivariate Generalize-p (MG-p), then two statistics were compared and 

some analysis was done in various methods [27]. Therefore, we develop some new monitoring 

schemes to monitor the OLLM/OCT based processes in Phase II, which is the main contribution 

of this paper. 

 

The multivariate ordinal processes 
 

MOP has at least two elements with multiple ordered levels called OCT. OLLM is used for 

OCT analysis and to suggest multivariate ordinal control charts because it shows the main and 

interaction effects between ordinal factors. 

 

The ordinal log-linear model 

 

As already mentioned, the OCT is used to show the concurrent relationship between two or 

more ordinal factors. These variables such as pyyy ,,..., 21  each with ih
, 1,2,...,i p  possible 

levels are considered. Thus, the table cells represent 1 2 ... ph h h  
possible frequencies [1]. In 

order to model the relationship between the levels of ordinal factors and the associated count in 

each cell, the OLLM has been presented in the previous section. Suppose the contingency table 

with two ordinal factors 
 1 2,y y

with h1 and h2 categories. Now, the OLLM is defined as the 

following equation: 

 

log ( )( ),ij i j i ju u v v         
 

(1) 

 

where,
Nij ij 

is the expected observation value for cell (i,j). iu
and jv

are the row and 

column scores, respectively, so that iu i
and jv j

. In addition,   is the constant effect, i

and j are the main effects of the ith row and jth column, respectively. Note that, is defined 

as linear by linear interaction parameter in OLLM which can be estimated by the following 

equation: 
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1. 1

1 1

. 1 1.

log ( )( ),
ij i j

i i j j

i j i j

u u v v
 


 

 

 

 

 
   

 
   

(2) 

where, 1( ) 1i iu u  
and 1( ) 1j jv v  

. Noted that, in Phase-I monitoring of OLLM 

(according to unknown parameters), parameters could be estimated using iterative Newton's 

single-dimensional algorithm [4]. The OLLM for two factors is defined as: 

 

0 1 1 2 2 1 1 2 2log ( )( ).y y y y y y        μ
 

(3) 

where, μ  is the expected counts vector for OCT and iy
( 1,2i  ) is the mean of the ith ordinal 

factor. 

 

The generalized ordinal log-linear model 

 

For p factors, Eq. 3 can be expanded as follows: 

 

0 1 1 2 2 12 1 1 2 2 1 1 1

2 2 2 1, 1 1 123 1 1 2 2 3 3

2, 1, 2 2 1 1 1,...,

log ... ( )( ) ... ( )( ) ...

( )( ) ... ( )( ) ( )( )( ) ...

( )( )( ) ...

p p p p p

p p p p p p p p p

p p p p p p p p p p

y y y y y y y y y y y

y y y y y y y y y y y y y y

y y y y y y

     

  

 

  

     

            

           

     

μ

1, 1 1 1 1( )...( )( )p p p p py y y y y y    
 

 

(4) 

where, μ  is the expected counts vector for OCT and iy
( 1,2,...,i p ) is the mean of the ith 

ordinal factor. As mentioned before, Li et al. [22] proposed two SOC and Generalize-p control 

charts to monitor the univariate ordinal processes (ordinal logistic processes) in Phase-II that 

are the basic statistics for our research. Hence, in this paper we overview these two control 

charts. 

 

The univariate SOC and the Generalized-p control charts 

 

Li et al. [22] proposed the SOC and Generalized-p control charts to monitor the univariate 

ordinal processes in Phase-II. In this subsection, an overview of both control charts is done. 

 

SOC control chart 

In particular, suppose that there are known IC probabilities 
(0)

kp (k=1,2,…,h) for each 

ordinal level of categorical factor. Hence, the known cumulative probabilities is (0)

1

k

k j

j

c p




(k=1,2,…,h). In addition, the ordinal level count kn (k=1,2,…,h) with total count as
1

h

k

j

N n




follows ( , )MN N p , where
1[ ,..., ]Thp pp . Let,

1[ ,..., ]Ti i ihn nn be the ith ordinal level count vector 

of size N which is subject to multinomial distribution (0)( , )MN N p with in-control 
(0) (0)

1[ ,..., ]Thp pp ; hence li statistic is defined as follows: 

 

(0) (0)

1

1

( 1)
h

i k k ik

k

l c c n



  
 

(5) 

 

To the better performance of the above statistic to detect the small and moderate shifts, they 

combined li with an EWMA and proposed the charting statistic as follows: 
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(0) (0)

1

1

( 1)
h

i k k ik

k

R c c z



  
 

(6) 

 

Note that, in Ri, nik is replaced by: 

 

1

0, ,

1

(1 ) ,
i

i j

i i j

j

a   



 z n

 

(7) 

 

where, 
1

1

0 1

0

1

, ,

1

(1 )
t

t j

t t

j t

a   

 

   is a sequence of constants put in place to ensure that all the 

weights sum up to 1 and 0 1   is the smoothing parameter and  1 2, ,...,i i i ihz z zz . The null 

hypothesis is rejected, if Ri is bigger than an ascertained limit. This limit is calculated by 

simulation in a way that a desired in-control (IC) average run length (ARL0) is achieved.  

 

Generalized-p control chart 

Generalized-p control chart is developed using Pearson chi-squre statistic to detect various 

shifts in process parameters. Li et al. [22] combined this statistic with an EWMA scheme to a 

better performance of basic control chart to detect small and moderate shifts. Let 
(0) (0) (0)

1 1[ ,..., ]Thp p q and 
(0) (0)

1 1[ ,..., ]Ti i i hz z w
. Where, 

(0)
q is known as estimated parameters vector 

from an IC contingency table; hence, the modified statistic for EWMA/Generalized-p is: 

 

(0) 1 (0)1
( ) ( ),T

i i iG N N
N

  w q Σ w q
 

(8) 

 

where,Σ is the covariance matrix and is defined as below: 

 
(0) (0)

(0) (0)

(1 )
, 1,..., 1.

r r

rc

r c

q q if r c
r c h

q q if r c

  
  

 

Σ

 

(9) 

 

Note that, the diagonal elements (the variance of ordinal factors) is calculated by multiplying 

the rth IC probability and (1-rth IC probability). In addition, the non-diagonal elements of this 

matrix is also calculated by multiplying the rth IC probability and the cth IC probability 

presented in 
)0(

q . For more information see [22,27].  

 

Proposed methods 
 

As mentioned before, the aim of this paper is to monitor the multivariate ordinal processes by 

developing univariate SOC and Generalized-p to the multivariate case. Hence, in this section, 

we propose multivariate ordinal categorical (MOC) and multivariate Generalized-p (MG-p) 

control charts.  

 

Multivariate ordinal categorical control chart 
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Consider p-way OCT (p-ordinal factors) with h1, h2,…, hp categories. Hence, the known in-

control probabilities for the ordinal cell count is

31 2

(0)

...

1 1 1 1

( , , ,..., )

... ( , , ,..., )
p

ijk p hhh h

i j k p

f i j k p

f i j k p



   



 
. Where, 

( , , ,..., )f i j k p is the ordinal level count for cell (i,j,k,…,p). Now, the modified Ri charting 

statistic for MOC (MRt) is defined as follows: 

 

31 2

(0) (0)

... 1 ... ...

1 1 1 1

... ( 1) ,
phhh h

t ijk p ijk p ijk p

i j k p

MR F F z

   

   
 

(10) 

 

where,

31 2

(0) (0)

... ...

1 1 1 1

...
phhh h

ijk p ijk p

i j k p

F 
   

 
. In addition, zt is: 

 

1

0, ,

1

(1 ) ,
t

t s

t t t

s

a   



 z n

 

(11) 

 

where,

2

2 1

1 2

1

1

, ,

1

(1 )
t

t t

t t

t t

a   

 

 
and 3 3 1 2 1 2 3111...1 112...1 11 ... 121...1 12 ... 1...1 ...[ ... ... ... ... ]

p p pt t t h h t t h h t h h t h h h h tn n n n n n nn
 

If MRt> L at a particular monitoring time, the null hypothesis is rejected. The process is out of 

control and adjusts L to get the desired average run length in control (ARL0). 

 

Multivariate Generalized-p control chart 

 

In this subsection, we develop the univariate EWMA/generalized-p proposed by Li et al. [22] 

to monitor the M-OLLM in Phase-II. Suppose p ordinal factors with h1, h2,…, hp levels. Hence, 

the modified EWMA/MG-p charting statistic (MGt) is developed as follows: 

 

(0) 1 (0)1
( ) ( ),T

t t tMG N N
N

  w q Σ w q
 

(12) 

 

where, 

31 2

1 1 1 1

... ( , , ,..., )
phhh h

i j k p

N f i j k p
   

 
 is the total sample size and

3 1 2 3

(0) (0) (0) (0)

111...1 112...1 11 ... ( 1)( 1)( 1)...( 1)[ , , ..., ]
p p

T

t t t t h h t h h h hz z z z    w
. Covariance matrix for EWMA/MG-

p is defined as follows: 

 

1 1 2 1 3 1

1 2 2 2 3 2

1 3 2 3 3 3

1 2 3

p

p

p

p p p

h h h h h h h

h h h h h h h

h h h h h h h

h hp h h h h h

 
 
 
 

  
 
 
 
 

Σ Σ Σ Σ

Σ Σ Σ Σ

Σ Σ Σ Σ Σ

Σ Σ Σ Σ
 

(13) 
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where, i jh hΣ
 is the (hi-1)×(hj-1) matrix that is the covariance matrix between levels of the factors 

i and j. Note that, Σ  elements could be calculated from Eq. 9, where,

3 1 2 3

(0) (0) (0) (0) (0)

111...1 112...1 11 ... ( 1)( 1)( 1)...( 1)[ , , ,..., ]
p p

T

h h h h h hp p p p    q
. If MGt>S, the null hypothesis is rejected, that 

means the process is out-of-control, where S is set to obtain a desired in-control average run 

length (ARL0). 

 

Performance assessment 
 

In this section, we evaluate the performances of the two proposed control charts through the 

OC ARL 
 1ARL

 criterion. Then, other evaluations are done based on a sensitivity analysis on 

the size of the rows and the columns as well as the number of ordinal factors of the contingency 

table. To this aim, the contingency tables with 4 and 5 rows and with 5 and 6 columns, and 

contingency tables with 3 and 4 ordinal factors are considered. 

Performance of the proposed MR and MG-p control charts is assessed by using simulation 

runs through applying 1ARL
 under various shifts in the OLLM parameters in units of the 

corresponding standard deviations. Consider a contingency table with 3 rows and 4 columns. 

Note that, the UCL of the MR and MG-p charts in the 3x4 contingency table is obtained equal 

to 37.10 and 0.93, respectively, to achieve a predetermined IC ARL equal to 200. The ARL1 

values for the two proposed charts are calculated using different shifts of the OLLM parameters 

and different smoothing parameters based on 5,000 simulation runs and are shown in Table 1-

4. In addition, the standard deviation of mean run length (SDARL) is shown in parentheses 

below the ARL value. 

Besides, the in-control parameter vector of the OLLM is assumed 
 1 0 5 0 5 0 15, . , . , .  β

. 

In addition, the IC standard deviations of the OLLM parameters are as follows: 

ˆ0
ˆ [2.14,1.43,1.28,0.89],σ

  
Note that, the standard deviations of the parameters estimated in the OLLM are obtained by 

using the following covariance matrix: 

 

,}])(['{)cov( 1 X/μ'μμdiagXβ N
 

(14) 

 

where X and μ  are the design matrix and the expected counts vector of the contingency table 

cells, respectively. Also, )(μdiag  is a diagonal matrix of the expected counts of the contingency 

table cells and N is the contingency table sample size [28]. 
 

Table 1. The ARL and SDARL values under the different shifts in the intercept ( 0 0.   
) 

λ 
 -1.2 -0.8 -0.5 -0.2 -0.1 0 0.1 0.2 0.5 0.8 1.2 

0.05 

MR 
98.39 

(1.18) 

130.18 

(1.90) 

153.41 

(2.02) 

173.75 
(2.01) 

188.89 
(2.10) 

200.15 

(2.61) 

185.08 

(2.08) 

175.89 

(2.01) 

151.02 

(2.01) 

132.35 

(1.91) 

105.68 

(1.10) 

MG-p 
93.57 

(1.13) 

130.25 

(1.95) 

156.84 

(1.99) 

175.69 

(2.04) 

190.05 

(2.11) 

201.05 

(3.32) 

189.98 

(2.05) 

180.39 

(2.02) 

155.61 

(2.00) 

131.58 

(1.97) 

99.48 

(1.01) 

0.1 

MR 
99.84 

(1.32) 

129.97 

(1.99) 

151.15 

(2.00) 

172.39 
(2.00) 

186.21 
(2.00) 

199.98 

(3.01) 

184.36 

(2.02) 

174.93 

(2.08) 

150.25 

(1.98) 

130.05 

(1.97) 

102.20 

(1.02) 

MG-p 
92.68 

(1.27) 

121.15 

(1.90) 

155.03 

(1.97) 

178.41 

(2.01) 

189.87 

(2.14) 

200.10 

(3.05) 

189.19 

(2.10) 

181.04 

(2.06) 

151.36 

(1.84) 

130.01 

(2.00) 

98.08 

(1.05) 
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0.2 

MR 
90.30 

(2.10) 

128.64 

(2.02) 

150.02 

(1.69) 

175.63 

(2.01) 

182.96 
(2.00) 

200.03 

(2.93) 

181.25 

(2.05) 

173.68 

(2.00) 

148.31 

(2.00) 

125.36 

(1.98) 

100.98 

(1.05) 

MG-p 
91.05 

(1.70) 

124.87 

(1.95) 

152.97 

(1.87) 

178.84 

(1.94) 

189.31 

(1.99) 

199.96 

(2.68) 

185.37 

(1.95) 

179.65 

(1.92) 

150.33 

(2.01) 

120.05 

(2.01) 

99.21 

(1.06) 

Table 2. The ARL and SDARL values under the different shifts in the first slope ( 1 1.   
) 

λ 
 -1.2 -0.8 -0.5 -0.2 -0.1 0 0.1 0.2 0.5 0.8 1.2 

0.05 

MR 
1.00 

(0.00) 

8.72 

(0.63) 
25.51 

(1.02) 

111.98 

(1.88) 

177.39 

(2.04) 

199.48 

(3.01) 

175.05 

(2.00) 

113.45 

(1.94) 

28.67 

(1.48) 

9.91 

(0.87) 

1.00 

(0.02) 

MG-p 
1.00 

(0.00) 

6.92 

(0.40) 

26.29 

(1.00) 

116.49 

(1.93) 

183.67 

(2.01) 

201.30 

(2.99) 

180.69 

(2.02) 

116.39 

(1.56) 

26.75 

(1.27) 

7.63 

(0.59) 

1.00 

(0.00) 

0.1 

MR 
1.00 

(0.00) 

8.00 

(0.51) 
23.67 

(1.00) 

109.94 

(1.84) 

175.63 

(2.01) 

200.08 

(2.65) 

172.59 

(2.05) 

111.42 

(1.79) 

24.38 

(1.21) 

8.24 

(0.94) 

1.00 

(0.00) 

MG-p 
1.00 

(0.00) 

6.74 

(0.39) 

23.05 

(0.91) 

110.63 

(1.67) 

182.35 

(2.09) 

200.18 

(2.97) 

183.54 

(2.01) 

119.67 

(1.91) 

25.97 

(1.30) 

6.35 

(0.86) 

1.00 

(0.00) 

0.2 

MR 
1.00 

(0.00) 

6.01 
(0.58) 

25.45 

(0.98) 

101.25 

(1.89) 

172.54 

(2.00) 

199.05 

(2.35) 

170.05 

(1.58) 

105.89 

(1.75) 

21.05 

(1.24) 

21.05 

(1.24) 

1.00 

(0.00) 

MG-p 
1.00 

(0.00) 

3.89 

(0.45) 

28.41 

(1.29) 

100.14 

(2.05) 

180.25 

(2.06) 

200.04 

(2.93) 

181.02 

(1.89) 

109.54 

(1.12) 

25.20 

(1.84) 

25.20 

(1.84) 

1.00 

(0.00) 

 

Table 3. The ARL and SDARL values under the different shifts in the second slope ( 2 2.   
) 

λ 
 -1.2 -0.8 -0.5 -0.2 -0.1 0 0.1 0.2 0.5 0.8 1.2 

0.05 

MR 
1.00 

(0.00) 

5.99 

(0.58) 

22.17 

(1.01) 

113.54 

(1.81) 

170.05 

(2.00) 

200.11 

(3.00) 

173.18 

(2.08) 

122.30 

(1.89) 

23.67 

(1.01) 

5.51 

(0.43) 

1.00 

(0.00) 

MG-p 
1.00 

(0.00) 

5.02 

(0.31) 

22.69 

(0.92) 

115.69 

(1.25) 

171.69 

(2.02) 

200.35 

(2.98) 

182.39 

(2.09) 

130.10 

(2.00) 

22.89 

(0.91) 

4.81 

(0.19) 

1.00 

(0.00) 

0.1 

MR 
1.00 

(0.00) 

4.69 

(0.34) 

20.19 

(0.75) 

111.97 

(1.68) 

166.35 

(1.98) 

200.01 

(2.91) 

170.05 

(2.00) 

120.94 

(1.95) 

22.24 

(1.00) 

4.67 

(0.61) 

1.00 

(0.00) 

MG-p 
1.00 

(0.00) 

3.70 

(0.21) 

21.57 

(0.89) 

119.67 

(1.09) 

169.27 

(2.01) 

200.10 

(3.01) 

181.29 

(2.11) 

130.04 

(1.69) 

21.69 

(0.98) 

3.98 

(0.32) 

1.00 

(0.00) 

0.2 

MR 
1.00 

(0.00) 

3.25 

(0.78) 

17.75 

(0.84) 

109.68 

(1.08) 

139.05 

(1.75) 

199.69 

(2.94) 

169.08 

(2.05) 

121.87 

(2.01) 

20.14 

(1.08) 

3.34 

(0.50) 

1.00 

(0.00) 

MG-p 
1.00 

(0.00) 

3.05 

(0.88) 

15.69 

(0.98) 

115.52 

(1.00) 

161.24 

(1.89) 

200.17 

(2.99) 

180.05 

(2.09) 

135.59 

(2.00) 

19.97 

(1.30) 

3.09 

(0.29) 

1.00 

(0.00) 

 

Table 4. The ARL and SDARL values under the different shifts in 


 (
.   

) 

λ 
 -1.2 -0.8 -0.5 -0.2 -0.1 0 0.1 0.2 0.5 0.8 1.2 

0.05 

MR 
7.20 

(0.97) 

43.31 

(0.96) 

90.54 

(1.12) 

110.15 

(1.90) 

161.47 

(2.01) 

201.39 

(2.96) 

160.81 

(2.00) 

111.68 

(1.87) 

82.28 

(1.61) 

48.91 
(1.05) 

6.61 

(0.24) 

MG-p 
7.01 

(0.39) 

41.47 

(0.82) 

91.00 

(1.80) 

112.39 

(1.91) 

166.30 

(2.05) 

200.57 

(2.99) 

162.98 

(2.02) 

114.15 

(1.99) 

85.39 

(1.53) 

45.60 

(0.99) 

6.04 

(0.30) 

0.1 

MR 
6.71 

(0.29) 

41.48 

(0.74) 

79.96 

(1.21) 

119.69 

(1.94) 

160.24 

(2.04) 

200.10 

(2.62) 

159.00 

(2.01) 

110.05 

(1.58) 

80.12 

(1.48) 

44.26 
(0.95) 

6.00 

(0.15) 

MG-p 
6.18 

(0.52) 

39.05 

(0.92) 

79.07 

(1.69) 

111.34 

(1.87) 

163.69 

(2.02) 

200.18 

(3.14) 

161.98 

(2.00) 

112.34 

(1.79) 

81.25 

(1.78) 

40.15 

(1.05) 

5.59 

(0.19) 
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0.2 

MR 
6.09 

(0.72) 

35.67 

(0.87) 

80.05 

(1.45) 

107.68 

(1.85) 

158.68 

(1.98) 

199.95 

(2.96) 

152.5 

(1.56) 

109.67 

(1.50) 

82.35 

(1.00) 
39.45 

(1.75) 

5.87 

(0.63) 

MG-p 
5.88 

(0.17) 

32.89 

(1.01) 

80.95 

(2.04) 

110.05 

(1.64) 

161.98 

(2.05) 

200.42 

(2.90) 

154.14 

(1.75) 

111.97 

(1.78) 

83.05 

(1.36) 

35.05 

(1.41) 

5.31 

(0.21) 

 

As it is clear from Tables 1-4, the ARL1 values of the MR chart are smaller than the ARL1 

values of MG-p under small and moderate shifts in all intercept and slope parameters of OLLM. 

Hence, the MR chart outperforms compared to the MG-p in these mentioned shifts. In addition, 

the performance of the proposed charts is assessed under different λ and results show the 

superiority of the mentioned control charts under λ equal to 0.2. In other words, proposed 

control charts have more efficiency in detecting OC conditions under λ=0.2 than the other λ. 

For this reason, this λ is selected for other calculations in this paper.  

Note that, other simulation studies under different simultaneous shifts in the OLLM 

parameters based on λ=0.2 are done and they are shown in Figs. 1-6. 

 

 
Fig. 1. Compare the performance of control charts for concurrent shifts in intercept and the first slope 

 

 
Fig. 2. Compare the performance of control charts for concurrent shifts in the intercept and the second slope 
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Fig. 3. Compare the performance of control charts for concurrent shifts in the first and the second slopes 

 

 

Fig. 4. Compare the performance of control charts for concurrent shifts in the intercept and 


 

 

 

Fig. 5. Compare the performance of control charts for concurrent shifts in the first slope and 

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Fig. 6. Compare the performance of control charts for concurrent shifts in the second slope and 


 

 

As it is clear from Figs. 1-6, the simultaneous shifts in two slope parameters result in a better 

out-of-control performance of the proposed control charts. These results are expected because 

the mean changes under simultaneous shifts larger the individual changes. In addition, in this 

study, sensitivity analyses based on 3x4 and 5x6 contingency tables, as well as simultaneous 

increases in the dimensional of the OCT, are done. Furthermore, higher contingency tables with 

three and four ordinal factors are performed to evaluate the performance of proposed control 

schemes, which mentioned OCTs based data set are presented in Appendix A section. Note 

that, the UCLs of proposed control charts are 39.90 and 101.91 respectively, for three-way and 

four-way OCTs. Tables 5-8 and Figs. 7-8 show the sensitivity analysis results as follows. 
 

Table 5. ARL and SDARL values of charts in other dimensions for different shifts in the intercept ( 0 0.   
) 

Dimension 
 -1.2 -0.8 -0.5 -0.2 -0.1 0 0.1 0.2 0.5 0.8 1.2 

3×5 

MR 
90.04 

(1.24) 

121.18 

(1.58) 

140.21 

(1.84) 

171.57 
(2.61) 

182.07 
(2.84) 

201.05 

(2.69) 

180.19 

(2.32) 

170.81 

(2.04) 

138.20 

(2.01) 

118.04 

(1.64) 

88.24 

(1.90) 

MG-p 
85.61 

(1.04) 

120.48 

(1.69) 

141.99 

(2.00) 

173.45 

(2.21) 

190.34 

(2.68) 

199.64 

(2.99) 

183.92 

(2.58) 

174.18 

(2.00) 

141.87 

(2.01) 

117.08 

(1.87) 

84.33 

(1.21) 

3×6 

MR 
81.34 

(1.44) 

109.31 

(1.91) 

140.10 

(1.51) 

171.39 
(2.04) 

181.64 
(2.27) 

199.09 

(2.67) 

180.08 

(2.42) 

169.98 

(2.11) 

131.51 

(1.99) 

110.35 

(1.96) 

80.97 

(1.17) 

MG-p 
80.01 

(1.30) 

110.64 

(1.47) 

141.19 

(1.81) 

173.12 

(2.10) 

182.34 

(2.44) 

201.30 

(3.01) 

181.11 

(2.51) 

171.12 

(2.15) 

133.54 

(1.94) 

110.41 

(1.97) 

79.72 

(1.00) 

4×4 

MR 
82.34 

(1.05) 

105.30 

(1.24) 

145.61 

(1.97) 

170.18 
(2.00) 

181.00 
(2.73) 

200.28 

(2.66) 

180.97 

(2.15) 

170.34 

(2.16) 

132.39 

(2.00) 

113.67 

(1.64) 

84.31 

(1.43) 

MG-p 
76.97 

(1.61) 

107.33 

(1.34) 

142.36 

(1.61) 

172.75 

(2.12) 

184.67 

(2.37) 

199.38 

(3.00) 

182.24 

(2.24) 

172.94 

(2.30) 

133.04 

(1.90) 

112.99 

(1.41) 

80.68 

(1.39) 

5×4 

MR 
80.62 

(1.04) 

100.39 

(1.27) 

140.56 

(1.74) 

168.91 
(2.05) 

180.08 
(2.46) 

200.91 

(2.69) 

180.20 

(2.00) 

169.05 

(2.05) 

130.59 

(2.01) 

108.34 

(1.67) 

80.69 

(1.41) 

MG-p 
75.61 

(1.01) 

106.36 

(1.34) 

142.36 

(1.91) 

170.38 

(2.14) 

182.95 

(2.40) 

199.39 

(2.94) 

182.00 

(2.10) 

170.98 

(2.21) 

132.94 

(1.99) 

109.25 

(1.91) 

77.89 

(1.05) 

4×5 

MR 
78.94 

(1.61) 

105.68 

(1.05) 

133.64 

(1.25) 

165.39 
(2.08) 

180.10 
(2.95) 

200.56 

(2.34) 

177.35 

(2.61) 

162.96 

(2.03) 

126.48 

(1.98) 

102.60 

(1.38) 

75.64 

(1.15) 

MG-p 
73.05 

(1.08) 

101.67 

(1.42) 

140.97 

(1.49) 

169.94 

(2.43) 

180.93 

(3.05) 

199.67 

(2.97) 

181.39 

(2.59) 

169.37 

(2.00) 

130.32 

(1.90) 

100.49 

(1.31) 

71.89 

(1.00) 



260  Hakimi et al. 

 

Table 6. ARL and SDARL values of charts in other dimensions for different shifts in the first slope ( 1 1.   
) 

Dimension 
 -1.2 -0.8 -0.5 -0.2 -0.1 0 0.1 0.2 0.5 0.8 1.2 

3×5 

MR 
1.00 

(0.00) 

7.87 

(0.67) 
25.05 

(1.00) 

112.57 

(1.98) 

175.51 

(2.84) 

200.26 

(2.89) 

174.33 

(2.68) 

110.54 

(1.36) 

25.67 

(1.64) 

8.05 

(0.82) 

1.00 

(0.00) 

MG-p 
1.00 

(0.00) 

6.04 

(0.62) 

24.09 

(1.02) 

113.49 

(1.97) 

180.69 

(2.56) 

200.94 

(3.02) 

180.01 

(2.94) 

112.49 

(1.84) 

25.03 

(1.24) 

7.00 

(0.92) 

1.00 

(0.00) 

3×6 

MR 
1.00 

(0.00) 

6.65 

(0.25) 
24.51 

(1.24) 

108.64 

(1.92) 

172.94 

(2.94) 

199.60 

(2.90) 

172.49 

(2.75) 

105.61 

(1.67) 

22.15 

(1.30) 

7.36 

(0.62) 

1.00 

(0.00) 

MG-p 
1.00 

(0.00) 

5.92 

(0.32) 

23.04 

(1.13) 

109.34 

(1.99) 

180.02 

(3.00) 

200.91 

(2.48) 

179.67 

(2.63) 

106.97 

(1.34) 

23.35 

(1.25) 

6.93 

(0.45) 

1.00 

(0.00) 

4×4 

MR 
1.00 

(0.00) 

8.64 

(0.93) 
26.91 

(1.02) 

110.23 

(1.68) 

173.34 

(2.63) 

200.58 

(2.53) 

172.52 

(2.37) 

109.63 

(1.95) 

25.93 

(1.01) 

9.02 

(0.98) 

1.00 

(0.00) 

MG-p 
1.00 

(0.00) 

6.61 

(0.49) 

24.41 

(1.14) 

110.99 

(1.95) 

181.36 

(2.67) 

201.07 

(3.01) 

179.04 

(2.91) 

110.38 

(1.98) 

24.39 

(1.07) 

8.00 

(0.67) 

1.00 

(0.00) 

5×4 

MR 
1.00 

(0.00) 

6.31 

(0.29) 
24.45 

(1.00) 

106.32 

(1.98) 

171.62 

(2.95) 

200.06 

(2.75) 

170.08 

(2.92) 

105.31 

(1.55) 

24.00 

(1.05) 

7.09 

(0.59) 

1.00 

(0.00) 

MG-p 
1.00 

(0.00) 

5.04 

(0.20) 

22.36 

(1.09) 

108.64 

(2.00) 

177.69 

(2.06) 

199.00 

(2.95) 

173.15 

(2.57) 

108.79 

(1.31) 

23.02 

(1.11) 

5.94 

(0.38) 

1.00 

(0.00) 

4×5 

MR 
1.00 

(0.00) 

7.80 

(0.90) 
26.87 

(1.67) 

109.61 

(1.63) 

172.68 

(2.38) 

200.81 

(2.87) 

170.85 

(2.05) 

106.96 

(2.00) 

27.03 

(1.54) 

9.60 

(0.79) 

1.00 

(0.00) 

MG-p 
1.00 

(0.00) 

6.09 

(0.68) 

26.01 

(1.00) 

110.99 

(2.08) 

178.73 

(2.90) 

199.47 

(2.53) 

172.94 

(2.34) 

110.31 

(1.97) 

25.36 

(1.09) 

7.94 

(0.69) 

1.00 

(0.00) 

 

Table 7. ARL and SDARL values of the charts in other dimensions for different shifts in the second slope  

( 2 2.   
) 

Dimension 
 -1.2 -0.8 -0.5 -0.2 -0.1 0 0.1 0.2 0.5 0.8 1.2 

3×5 

MR 
1.00 

(0.00) 

3.06 

(0.30) 

19.62 

(0.65) 

110.59 

(1.84) 

172.36 

(3.02) 

200.29 

(2.56) 

170.15 

(2.35) 

116.31 

(2.00) 

19.05 

(1.00) 

3.00 

(0.35) 

1.00 

(0.00) 

MG-p 
1.00 

(0.00) 

2.94 

(0.23) 

16.97 

(0.69) 

119.63 

(1.92) 

173.49 

(2.09) 

201.00 

(3.05) 

178.52 

(2.96) 

122.67 

(1.97) 

18.86 

(0.96) 

2.26 

(0.20) 

1.00 

(0.00) 

3×6 

MR 
1.00 

(0.00) 

2.64 

(0.38) 

18.52 

(0.53) 

105.37 

(1.40) 

170.37 

(2.08) 

200.54 

(2.97) 

170.12 

(2.03) 

111.32 

(2.02) 

18.01 

(0.94) 

2.67 

(0.28) 

1.00 

(0.00) 

MG-p 
1.00 

(0.00) 

2.09 

(0.31) 

14.67 

(0.34) 

111.82 

(1.89) 

172.57 

(2.47) 

200.02 

(3.01) 

176.96 

(2.67) 

120.34 

(1.56) 

17.08 

(0.85) 

2.02 

(0.19) 

1.00 

(0.00) 

4×4 

MR 
1.00 

(0.00) 

2.96 

(0.26) 

19.00 

(0.45) 

112.09 

(1.95) 

170.98 

(3.00) 

200.52 

(2.92) 

171.25 

(2.65) 

113.51 

(2.55) 

18.90 

(0.62) 

3.08 

(0.59) 

1.00 

(0.00) 

MG-p 
1.00 

(0.00) 

2.36 

(0.12) 

15.93 

(0.49) 

114.38 

(1.56) 

176.81 

(2.69) 

200.09 

(2.68) 

175.39 

(2.28) 

119.97 

(2.00) 

18.61 

(0.97) 

2.68 

(0.27) 

1.00 

(0.00) 

5×4 

MR 
1.00 

(0.00) 

2.63 

(0.20) 

18.06 

(0.28) 

110.57 

(1.49) 

169.37 

(2.84) 

200.18 

(2.99) 

169.30 

(2.21) 

108.79 

(1.69) 

17.04 

(0.54) 

2.62 

(0.29) 

1.00 

(0.00) 

MG-p 
1.00 

(0.00) 

2.00 

(0.10) 

15.00 

(0.28) 

114.97 

(1.94) 

172.39 

(2.49) 

200.29 

(2.47) 

174.08 

(2.87) 

111.58 

(2.01) 

16.82 

(0.67) 

2.08 

(0.18) 

1.00 

(0.00) 

4×5 

MR 
1.00 

(0.00) 

2.05 

(0.11) 

16.91 

(0.21) 

109.57 

(1.68) 

169.02 

(2.60) 

200.36 

(2.32) 

168.24 

(2.48) 

106.43 

(1.41) 

15.59 

(0.40) 

2.00 

(0.22) 

1.00 

(0.00) 

MG-p 
1.00 

(0.00) 

1.92 

(0.08) 

14.97 

(0.19) 

111.36 

(1.80) 

171.29 

(2.15) 

199.94 

(2.97) 

173.95 

(2.63) 

109.48 

(1.69) 

14.89 

(0.26) 

1.33 

(0.09) 

1.00 

(0.00) 
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Table 8. ARL and SDARL values of the charts in other dimensions for different shifts in the


(
.   

) 

Dimension 
 -1.2 -0.8 -0.5 -0.2 -0.1 0 0.1 0.2 0.5 0.8 1.2 

3×5 

MR 
4.52 

(0.36) 

33.46 

(0.49) 

79.24 

(1.15) 

105.89 

(1.81) 

151.63 

(2.01) 

200.50 

(2.63) 

150.62 

(1.97) 

105.93 

(1.68) 

79.35 

(1.41) 
32.26 

(1.04) 

3.65 

(0.63) 

MG-p 
4.08 

(0.16) 

31.97 

(0.67) 

79.67 

(1.90) 

108.06 

(1.67) 

155.07 

(2.02) 

200.01 

(3.00) 

153.98 

(1.80) 

108.25 

(1.38) 

82.64 

(1.48) 

32.05 

(1.12) 

3.14 

(0.31) 

3×6 

MR 
3.02 

(0.11) 

29.69 

(0.34) 

75.56 

(1.00) 

103.64 

(1.40) 

149.92 

(1.79) 

200.11 

(2.76) 

150.05 

(1.69) 

103.61 

(1.42) 

76.49 

(1.32) 
30.08 

(1.15) 

3.23 

(0.43) 

MG-p 
2.90 

(0.08) 

29.37 

(0.15) 

78.79 

(1.08) 

107.31 

(1.33) 

153.68 

(1.63) 

200.99 

(3.14) 

153.67 

(1.82) 

107.90 

(1.49) 

79.96 

(1.09) 

32.00 

(1.00) 

2.96 

(0.35) 

4×4 

MR 
3.22 

(0.08) 

28.37 

(0.41) 

76.88 

(1.20) 

104.32 

(1.54) 

150.65 

(1.87) 

200.03 

(2.35) 

151.64 

(1.99) 

104.32 

(1.77) 

78.81 

(1.17) 
31.55 

(1.00) 

3.98 

(0.05) 

MG-p 
3.00 

(0.09) 

27.74 

(0.26) 

79.93 

(1.14) 

105.68 

(1.42) 

154.19 

(1.48) 

200.94 

(2.66) 

155.30 

(1.93) 

108.89 

(1.68) 

80.06 

(1.19) 

30.57 

(0.68) 

2.84 

(0.23) 

5×4 

MR 
3.02 

(0.05) 

27.02 

(0.66) 

75.51 

(1.01) 

101.55 

(1.26) 

150.07 

(1.89) 

200.22 

(2.61) 

150.11 

(2.00) 

102.21 

(1.60) 

76.78 

(1.04) 
30.62 

(0.89) 

3.25 

(0.12) 

MG-p 
2.67 

(0.08) 

26.00 

(0.20) 

77.84 

(1.08) 

103.97 

(1.32) 

154.04 

(1.99) 

200.45 

(2.97) 

154.01 

(1.97) 

107.75 

(1.49) 

79.33 

(1.24) 

29.47 

(0.58) 

2.08 

(0.06) 

4×5 

MR 
2.35 

(0.10) 

25.92 

(0.31) 

73.19 

(0.55) 

101.38 

(1.09) 

149.92 

(1.95) 

199.09 

(2.57) 

148.52 

(2.01) 

101.15 

(1.46) 

74.41 

(1.00) 
28.87 

(0.87) 

2.21 

(0.24) 

MG-p 
1.69 

(0.04) 

23.50 

(0.34) 

72.26 

(0.94) 

104.50 

(1.29) 

154.00 

(2.02) 

200.53 

(2.73) 

153.34 

(2.53) 

105.60 

(1.89) 

75.49 

(1.03) 

27.04 

(0.67) 

2.00 

(0.10) 

 

As shown in Tables 5-8, the MR control chart outperforms the MG-p chart in detecting small 

and moderate OC conditions in all parameters of the OLLM. In other words, the results in the 

mentioned tables show that the MR chart outperforms the MG-p chart in monitoring the OCT-

based processes with 4 and 5 rows and 5 and 6 columns under small and moderate shifts. 

Furthermore, it is clear from the results of Tables 1-8, the sensitivity of the proposed control 

charts under negative shifts to detect the OC condition is more than corresponding positive 

shifts in all OLLM parameters. 

 

 
Fig. 7. Performance comparison of the control charts with three ordinal factors under different shifts in the 

second slope 
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Fig. 8. Performance comparison of the control charts with four ordinal factors under different shifts in the second 

slope 

 

Figs. 7–8 also show similar results such that the MR control chart outperform the MG-p 

chart to detect an OC condition under small and moderate shifts in the second slope parameter 

of the OLLM with 3 and 4 ordinal factors. Totally, it can be noted that the MR control chart 

has shown better performance than the MG-p chart to detect small and moderate OC conditions.  

 

The numerical example 
 

In this study, a real data set based on an OCT is presented to show the application of the 

proposed charts and compare their performances in monitoring OLLM based processes based 

on a real case extracted from [29].   

Consider the OCT from the 2006 general social survey. One of the questions from the 

respondents is, "Overall, do you think you are very happy, quite happy, or not very happy?" 

They are also asked about their family's income, "Do you think your family's income is below 

average, average, or above average compared to a typical American family?" These two 

questions. Based on this, the OCT is formed [29] and shown in Table 9. 

 
Table 9. The ordinal cross-classified table for happiness and relative family income [29] 

 Happiness  

Family income Very happy Pretty happy Not too happy Total 

Above average 272 294 49 615 

Average 454 835 131 1420 

Below Average 185 527 208 920 

Total 911 1656 388 2955 

 

Now, the performance of the proposed schemes under two different shifts in the first slope 

and 


 parameters of the OLLM. For that, shifts are done in -0.1σ1β in 1 and 0.1σφ in


 and 

results are shown in Figs. 9-12. The OLLM for the above OCT with two ordinal factors 

including happiness (H) and family income (FI) under an in-control state is defined as follows: 

 

log 1 0.5 0.5 0.15( )( ); 1,2,3 1,2,3.H FI H H FI FI H and FI       μ
 

(15) 

 



Advances in Industrial Engineering, Summer 2021, 55(3): 249-267 

 263 

 

Note that, the UCLs of the MR and MG-p charts based on the model in Eq. 15 are set through 

10,000 simulation runs to determine an IC ARL of 200.  

 

 

Fig. 9. MR control chart performance under -0.1σ1β shift in 1  

 

 

Fig. 10. MG-p control chart performance under -0.1σ1β shift in 1  
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Fig. 11. MR control chart performance under 0.1σφ shift in


 

 

 

Fig. 12. MG-p control chart performance under 0.1σφ shift in


 

 

Figs. 9-12 demonstrate the performance of the MR and MG-p control charts under the 

mentioned shifts in 1  and


. As shown in figures, the OC signals by the MR and MG-p control 

charts occur at the 36th and 79th sample under -0.1σ1β shift in 1  and 51st and 107th sample under 

0.1σφ shift in


, respectively. These results show that under the mentioned shifts in 1  and


of 

the OLLM, the MR control chart detects the OC condition sooner than the MG-p control chart. 

 

Conclusion and future studies 
 

Two new control schemes including MR and MG-p were proposed for Phase II monitoring the 

M-OLLM based processes. The results show that the MR control chart performs better than 

MG-p control charts, where all OLLM parameter shifts are small and medium. In addition, 

several sensitivity analyzes were performed to evaluate the efficiency of the proposed control 

charts based on the various values of the smoothing parameters, increasing the number of rows 

and columns as well as simultaneous increasing of rows and columns of the OCT. Furthermore, 

another analysis was done to evaluate the effect of the increasing number of ordinal factors on 



Advances in Industrial Engineering, Summer 2021, 55(3): 249-267 

 265 

 

the performance of the proposed control charts. The results showed that the proposed control 

charts have better performance in detecting the out-of-control condition under 0.2λ   rather 

than the other smoothing parameters considered. Moreover, increasing the number of rows and 

columns, as well as the simultaneous increasing in rows and columns, improve the performance 

of the proposed control charts. Furthermore, increasing the ordinal factors in OLLM led to 

relatively better performance of the proposed control charts. Also, a real data set based on an 

OCT was performed to illustrate the applicability of the proposed charts and similar results 

were obtained. For future study, Phase I monitoring of the OCT could be a fruitful area for other 

researchers. 
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Appendix  
 

Table A.1. Data set for the three-way OCT 

  y3 

y1 y2 1 2 3 4 

1 
1 2 5 1 8 

2 5 3 0 7 

2 
1 1 3 9 6 

2 10 7 11 8 

3 
1 4 5 8 1 

2 3 4 8 1 

 

Table A.2. Data set for the four-way OCT 

  y3 

  1 2 3 4 

  y4 

y1 y2 1 2 1 2 1 2 1 2 

1 
1 2 5 1 8 4 9 10 12 

2 5 3 0 7 10 12 8 11 

2 
1 1 3 9 6 9 9 11 5 

2 10 7 11 8 9 11 4 6 

3 
1 4 5 8 1 7 13 7 8 

2 3 4 8 1 5 14 5 6 
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