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Abstract  

Assigning a limited number of relief teams to casualties immediately after a disaster 

is a challenging task in the casualty management process. This paper proposes 

several dynamic strategies for allocating teams to casualty groups right after a 

sudden-onset disaster to maximize the expected number of survivors. In the 

proposed strategies, serious triage groups and the deterioration of the physical 

condition of injured people are considered. The ratio of casualties in two critical 

triage groups, and the treatment rates and survival probabilities are the main 

parameters of the strategies. Thereafter, a case study is employed to demonstrate 

the validity of the proposed model. The strategies are compared based on the 

summation of the ratio of casualties in two triage groups. This comparison 

represents that the saving rate may be considered as an appropriate ratio for 

assigning medical teams to casualty groups. Sensitivity analysis evaluates the 

impact of key parameters on the model results. Accordingly, changes in the ratio of 

triaged people have less effect on the ratio of survivors than changes in the 

treatment rates. It indicates the importance of relief teams’ allocation for surviving 

the casualties. 
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Introduction  
 

Natural disasters such as earthquakes, floods, and hurricanes make a significant loss in human 

lives, infrastructures, and community properties. Therefore, efficient management of disasters 

is an important issue that policymakers in disaster-prone countries have been confronted with 

in recent decades. Among four phases of the disaster management; i.e., mitigation, 

preparedness, response, and recovery, the third one is the most challenging due to the 

limitations of relief resources (e.g., rescue and medical teams, transportation fleet, and relief 

items), the time pressure due to increasing the death probability of casualties over time, and the 

lack of sufficient data (i.e., the number and location of affected sites and casualties). These 

challenges are of more criticality in the initial hours after disasters in which the survival 

probability of casualties is higher but relief resources accessible in affected sites are very 

limited.    

In the stressful environment after disasters, a lot of people may be injured and in need of 

first-aid assistance to stabilize their medical conditions before being taken to hospitals. This 

function that is called “stabilization operation” is considered as one of the most important 

operations in the response phase to maximize the number of survivors (Rezapour et al. [17]). 

Farahani et al. [5] categorize life-saving operations in the response phase into five groups: (1) 
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Rescue Operation – this operation includes dispatching rescue teams to affected sites to search, 

locate, and extract trapped casualties (e.g., in collapsed buildings and bridges), (2) Triage 

Operation – in this operation, casualties are categorized according to their injury levels and 

prioritized for medical treatment under the lack of efficient medical resources/teams. Several 

triage methods were proposed in the literature such as Simple Triage and Rapid Treatment 

(START) (Super et al. [23], Triage Sieve (Hodgetts and Macway-Jones [8]), Sacco Triage 

Method (Sacco et al. [20]), Sort, Assess, Life-saving interventions, Treatment and/or Transport 

(Lerner et al. [11]), and Severity Adjusted Victim Evacuation (Dean and Nair [4]). START, as 

the most common triage method, categorizes casualties into four groups labelled by red, yellow, 

green, and black colours, (3) Stabilization Operation – after extrication and triage, casualties, 

for the first aid assistance, are transported to temporary medical centres established on the field, 

(4) Transportation Operation – casualties who need further medical interventions (e.g., surgery 

and hospitalization) are transported from on-field medical centres to nearby hospitals, and (5) 

Hospitalization Operation – Transported casualties to each hospital are prioritized for 

hospitalization and receive complete treatment under the lack of sufficient beds. 

The focus of this paper is on the stabilization operation which depends on the allocation of 

medical resources/teams to different casualty groups having different injury levels and survival 

probabilities. In this paper, we focus on a given medical centre in an affected site and develop 

several strategies (DASs) for assigning rescue and medical teams to casualties in a dynamic 

manner while the number of teams is known. The casualties are extracted by the rescue 

resources/teams in the affected site and sent to the medical centre for medical stabilization. The 

proposed DASs assign medical resources/teams to casualty groups in a way to maximize the 

expected number of survivors. The green casualty group is not in danger of death and the black 

group is not expected to survive even after a medical intervention. Therefore, we focus on the 

red and yellow casualty groups as two critical groups that may be saved by relief teams after a 

disaster. Due to the lack of enough medical resources/teams, efficient allocation of 

resources/teams to red and yellow casualty groups can significantly increase the number of 

survivors.  

The rest of the paper is organized as follows. Section 2 contains a review of the relevant 

literature. Section 3 provides a detailed problem definition and mathematical formulation for 

the problem. Numerical results are discussed in Section 4. Finally, Section 5 concludes the 

paper and proposes some future research directions. 

 

Literature review 
 

In recent decades, many scholars have studied subjects in the field of casualty management. 

Farahani et al. [5] reviewed the relevant papers and categorized them according to their features 

such as objective functions, decisions, assumptions, and limitations. They used this 

classification to identify research gaps and determine future research directions that need more 

investigation. Since this study addresses the on-field treatment in temporary medical centres, 

we only review the papers that considered locating medical centres and planning their activities.  

  

Locating On-field Medical Centres 

 

Sabouhi et al. [19] developed a location-routing model to transport the evacuees from affected 

areas to shelters. The location of shelters, and routing and scheduling of relief vehicles should 

be determined. The objective function minimized the total transportation time. Zafari and 

Shishebori [25] introduced a problem to minimize arrival times. Alizade et al. [2] proposed a 

model for locating casualty collection points, allocating affected sites to the points, and 

assigning these points and their casualties to hospitals. Liu et al. [13] developed a model to 
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locate on-field medical centres. This model allocated rescue resources (e.g., helicopters and 

ambulances) to centres in a way to maximize the expected number of survivors and minimize 

the total operational cost.  

Li et al. [12] developed a scenario-based three-stage model to locate medical facilities and 

plan casualty transportation in a way to minimize the total costs (sum of fixed cost of locating 

facilities, transportation cost of casualties, and penalty cost for un-evacuated victims). A 

customized progressive hedging algorithm was developed to solve the problem. Oksuz and 

Satuglu [16] developed a two-stage stochastic model to determine the location of medical 

centres and allocation of casualties to them in a way to minimize the total setup and 

transportation cost. Sun et al. [21] determined the location of emergency medical services and 

transportation of casualties to these centres.  Robust optimization was employed to cope with 

uncertainties in parameters. Sun et al. [22] studied the facility location, casualty transportation, 

and allocation of rescue vehicles. Robust optimization and e-constraint approaches were used 

to solve the model. In all of these papers, the treatment operations within medical centres were 

ignored. This research gap is bridged in this paper. 

 

Treating Casualties in Medical Centres 

 

Lodree et al. [14] proposed a model to optimize the allocation of doctors, nurses, and their 

combinations (called servers) to casualty queues in a medical centre. They used stochastic 

dynamic programming to minimize the expected holding costs in the centre. But, the 

deterioration of the physical condition of casualties over time was not considered. We formulate 

the time-decreasing survival probabilities for casualty groups to consider it. Rezapour et al. [18] 

studied the allocation of relief teams to affected sites and casualty groups. They assumed that 

casualties arrive at the medical centre according to the Poisson process with a fixed rate. They 

assumed that the number of relief teams is fixed over time. Rezapour et al. [17] developed a 

model to optimize the treatment strategy considering the spatial dispersion of casualties and 

temporal variations of emergency resources. Maximizing the survivors’ number was as the 

objective function. The treatment rate in a single treatment station was fixed. To maximize the 

expected number of survivors, Baghaian et al. [3] developed some treatment strategies in 

medical centres; but, they assumed fixed parameters over time. Unfortunately, the deterioration 

of physical conditions of yellow casualties was not considered in recent papers causing their 

movement to the red group. 

 

Transporting Casualties to Hospitals 

 

Most of the current papers in the literature focus on the transportation of casualties from 

affected sites to hospitals. For example, Mills et al. [15] developed a model to prioritize the 

transportation of casualties from an affected site to hospitals. They employed three-parameter 

survival probability functions for different triage groups that deteriorate over time. Dean and 

Nair [4] proposed SAVE (Severity- Adjusted Victim Evacuation) model to prioritize the 

process of transporting casualties to hospitals in a way to maximize the expected number of 

survivors. Using a fuzzy chance constraint programing, Alinaghian et al. [1] developed a relief 

vehicle routing model to minimize the total response time. Jin et al. [9] studied the casualty 

transportation in a three-layer relief network under the transportation fleet limitation. Similarly, 

Kamali et al. [10] developed a model to determine the order of transporting casualties by the 

limited number of ambulances to hospitals. Zhu et al. [26] proposed a multi-objective 

mathematical model for routing of vehicles among affected sites and temporary medical 

stations. The objective functions of the model are minimizing the transportation costs and 

deprivation costs. Feng et al. [6] considered the problem of hospital transportation taking into 
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account the injury classification and survival probability. Ant colony optimization algorithm 

was used to solve the problem.  

To highlight the novelties of our model and its contribution to the literature, the most related 

papers are summarized in Table 1 and their important features are detailed. 

 
Table 1. Literature review 
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Decisions 
Dynamic 

parameters 
Objective function 

Solution 

approach 

Alizade et al. 

[2] 
- ✓ ✓ 

-Locate medical 

centres 

-Allocate 

casualties to 

medical centres 

Casualty flow Minimize total costs 
Linear 

Programming 

Lodree et al. 

[14] 
- - ✓ 

Allocate teams to 

casualty queues 

-Arrival rate of 

casualties 

-Treatment rate 

Minimize total costs 
Dynamic 

programming 

Liu et al. [13] - - ✓ 

Allocate 

casualties to 

medical centres 

Survival 

probability 

Maximize expected number of 

survivors and minimize total 

operational cost 

Linear 

Programming 

Rezapour et 

al. [18] 
✓ ✓ ✓ 

Allocate teams to 

casualty groups 

Survival 

probability 

Maximize expected number of 

survivors 
Queue theory 

Sun et al. 

[21] 
✓ ✓ - 

Allocate 

casualties to 

medical centres 

Survival 

probability 
Injury Severity Score 

Linear 

Programming 

Sun et al. 

[22] 
✓ ✓ - 

Allocate 

casualties to 

medical centres 

Survival 

probability 

Minimize injury severity score 

and 

Minimize total costs 

Linear 

Programming 

Rezapour et 

al. [17] 
✓ ✓ ✓ 

Allocate teams to 

casualty groups 

Survival 

probability 

 

Maximize expected number of 

survivors 
Simulation 

Baghaian et 

al. [3] 
✓ ✓ ✓ 

Allocate teams to 

casualty groups 

Survival 

probability 

 

Maximize expected number of 

survivors 

Linear 

Programming 

This study ✓ ✓ ✓ 
Allocate teams to 

casualty groups 

-Survival 

probability 

-Arrival rate 

-Treatment rate 

-Deterioration of 

yellow group 

Maximize expected number of 

survivors 

Linear 

Programming 

 

The main contributions of this study are as follows: 

(1) Due to the variation in the number of relief resources, we assume that the arrival rate 

of casualties at the medical centre is dynamic. Most of the previous papers assumed 

that all casualties are available at time zero and they ignored the search and rescue 

operation in the casualty management (Mills et al. [15]; Dean and Nair [4]; Kamali et 

al. [10]). In our study, we assume dynamism in the number of teams, the rescue rate 

and the treatment rate. The number of casualties in the red group changes over time.   
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(2) The physical condition of casualty groups is considered to be dynamic and deteriorates 

over time. Yellow casualties are turned to red if they are not treated on time.  

(3) Several novel DASs are developed to allocate medical teams to casualty groups in a 

dynamic environment.  

   

Problem definition 
 

Providing medical services for a huge number of casualties in the first hours after a mass-

casualty incident (MCI) is a challenging issue. In this paper, we consider an urban area which 

has severely been stricken by a sudden-onset disaster such as an earthquake. Due to the high 

population density, there might also be a huge number of seriously injured casualties trapped 

in collapsed buildings, damaged bridges, crashed cars, etc. These casualties should be extricated 

(by search and rescue teams) and medically stabilized (by on-site medical teams), before 

transportation to hospitals for a comprehensive treatment. Therefore, urban search-and-rescue 

(USAR) and medical teams are usually dispatched to the affected sites in order to provide relief 

operations in some on-site temporarily-established facilities called casualty treatment stations 

(CTSs). Due to a large number of casualties and limited number of medical teams, the allocation 

of teams to the casualty groups has an important role in the efficiency of casualty management 

operation. 

In the affected sites, rescued casualties by USAR teams are categorized into four triage 

groups according to their injury levels (Mills et al. [15]), and then sent to CTS to receive first 

aid assistance. We only consider red and yellow casualties whose physical conditions 

deteriorate over time if they do not receive medical interventions. CTS is located on safe points 

near the affected sites. It is assumed that the survival probability of each triage group is a 

decreasing function of time. If yellow-group casualties do not receive medical services on time, 

their triage group might be turned to red. So, the triage is repeated in specific time intervals for 

waiting casualties who still have not received any services. In each triage repetition, the triage 

group of some waiting casualties may change. The main question of our research is how to 

allocate the medical teams to casualty groups considering the search and rescue in which the 

expected number of survivors is maximized. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1. Our problem 

 

The number of USAR and medical teams in each time unit are known and may change over 

the planning horizon because new teams may be dispatched to the affected sites and CTSs. The 

rescue rate of each USAR team in each time unit (i.e., the number of casualties rescued by a 

USAR team in each time unit) may change over time because the density of casualties in the 
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affected sites is usually high in the first hours after the disaster and starts to decrease after that. 

The treatment rate of a medical team in each time unit may also change over time. The severity 

of the disaster may be different in the affected sites and the ratio of red casualties is not the 

same. Therefore, the ratio of red casualties to total casualties is changed over time period. In 

each time unit, some yellow casualties who do not receive a service, are transferred to the red 

group. A general structure of the investigated problem is represented in Fig. 1.  

In this paper, we analyse the performance of DASs. They assign medical teams to casualty 

groups in six different ways: in the first three strategies, the number of teams allocated to the 

red group is less than that to the yellow group whereas the last three strategies are the inverse 

of the first three ones:  

1. Strategy 1: The medical teams are allocated to casualty groups proportional to 

number of casualties in those groups: 

 
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑒𝑎𝑚𝑠 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑 𝑡𝑜 𝑡ℎ𝑒 𝑟𝑒𝑑 𝑔𝑟𝑜𝑢𝑝

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑒𝑎𝑚𝑠 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑 𝑡𝑜 𝑡ℎ𝑒 𝑦𝑒𝑙𝑙𝑜𝑤 𝑔𝑟𝑜𝑢𝑝
=

𝑅𝑎𝑡𝑖𝑜 𝑜𝑓 𝑟𝑒𝑑 𝑐𝑎𝑠𝑢𝑙𝑎𝑡𝑖𝑒𝑠

𝑅𝑎𝑡𝑖𝑜 𝑜𝑓 𝑦𝑒𝑙𝑙𝑜𝑤 𝑐𝑎𝑠𝑢𝑎𝑙𝑡𝑖𝑒𝑠
 

2. Strategy 2: The medical teams allocated to casualty groups proportional to treatment 

rate of casualties in those groups: 

 
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑒𝑎𝑚𝑠 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑 𝑡𝑜 𝑡ℎ𝑒 𝑟𝑒𝑑 𝑔𝑟𝑜𝑢𝑝

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑒𝑎𝑚𝑠 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑 𝑡𝑜 𝑡ℎ𝑒 𝑦𝑒𝑙𝑙𝑜𝑤 𝑔𝑟𝑜𝑢𝑝
=

𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝑟𝑎𝑡𝑒 𝑜𝑓 𝑟𝑒𝑑 𝑐𝑎𝑠𝑢𝑙𝑎𝑡𝑖𝑒𝑠

𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝑟𝑎𝑡𝑒 𝑜𝑓 𝑦𝑒𝑙𝑙𝑜𝑤 𝑐𝑎𝑠𝑢𝑙𝑎𝑡𝑖𝑒𝑠
 

3. Strategy 3: The medical teams allocated to casualty groups proportional to survival 

probability of casualties in those groups multiplied by their treatment rate (This 

shows saving rate of casualties by a medical team): 

 
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑒𝑎𝑚𝑠 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑 𝑡𝑜 𝑡ℎ𝑒 𝑟𝑒𝑑 𝑔𝑟𝑜𝑢𝑝

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑒𝑎𝑚𝑠 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑 𝑡𝑜 𝑡ℎ𝑒 𝑦𝑒𝑙𝑙𝑜𝑤 𝑔𝑟𝑜𝑢𝑝
=

𝑆𝑢𝑟𝑣𝑖𝑣𝑎𝑙 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑟𝑒𝑑 𝑐𝑎𝑠𝑢𝑙𝑎𝑡𝑖𝑒𝑠 × 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝑟𝑎𝑡𝑒  𝑜𝑓 𝑟𝑒𝑑 𝑐𝑎𝑠𝑢𝑙𝑎𝑡𝑖𝑒𝑠 

𝑆𝑢𝑟𝑣𝑖𝑣𝑎𝑙 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓  𝑦𝑒𝑙𝑙𝑜𝑤 𝑐𝑎𝑠𝑢𝑙𝑎𝑡𝑖𝑒𝑠 × 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝑟𝑎𝑡𝑒  𝑜𝑓  𝑦𝑒𝑙𝑙𝑜𝑤 𝑐𝑎𝑠𝑢𝑙𝑎𝑡𝑖𝑒𝑠 
 

4. Strategy 4:  Allocating medical teams to casualty groups as follows: 
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑒𝑎𝑚𝑠 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑 𝑡𝑜 𝑡ℎ𝑒 𝑟𝑒𝑑 𝑔𝑟𝑜𝑢𝑝

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑒𝑎𝑚𝑠 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑 𝑡𝑜 𝑡ℎ𝑒 𝑦𝑒𝑙𝑙𝑜𝑤 𝑔𝑟𝑜𝑢𝑝
=

𝑅𝑎𝑡𝑖𝑜 𝑜𝑓 𝑦𝑒𝑙𝑙𝑜𝑤 𝑐𝑎𝑠𝑢𝑙𝑎𝑡𝑖𝑒𝑠

𝑅𝑎𝑡𝑖𝑜 𝑜𝑓 𝑟𝑒𝑑 𝑐𝑎𝑠𝑢𝑎𝑙𝑡𝑖𝑒𝑠
 

5. Strategy 5: Allocating medical teams to casualty groups as follows:  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑒𝑎𝑚𝑠 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑 𝑡𝑜 𝑡ℎ𝑒 𝑟𝑒𝑑 𝑔𝑟𝑜𝑢𝑝

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑒𝑎𝑚𝑠 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑 𝑡𝑜 𝑡ℎ𝑒 𝑦𝑒𝑙𝑙𝑜𝑤 𝑔𝑟𝑜𝑢𝑝
=

𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝑟𝑎𝑡𝑒 𝑜𝑓𝑦𝑒𝑙𝑙𝑜𝑤 𝑐𝑎𝑠𝑢𝑙𝑎𝑡𝑖𝑒𝑠

𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝑟𝑎𝑡𝑒 𝑜𝑓 𝑟𝑒𝑑 𝑐𝑎𝑠𝑢𝑙𝑎𝑡𝑖𝑒𝑠
 

6. Strategy 6: The medical teams are allocated to casualty groups as follows: 
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑒𝑎𝑚𝑠 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑 𝑡𝑜 𝑡ℎ𝑒 𝑟𝑒𝑑 𝑔𝑟𝑜𝑢𝑝

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑒𝑎𝑚𝑠 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑 𝑡𝑜 𝑡ℎ𝑒 𝑦𝑒𝑙𝑙𝑜𝑤 𝑔𝑟𝑜𝑢𝑝
=

𝑆𝑢𝑟𝑣𝑖𝑣𝑎𝑙 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑦𝑒𝑙𝑙𝑜𝑤 𝑐𝑎𝑠𝑢𝑙𝑎𝑡𝑖𝑒𝑠 × 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝑟𝑎𝑡𝑒  𝑜𝑓 𝑦𝑒𝑙𝑙𝑜𝑤 𝑐𝑎𝑠𝑢𝑙𝑎𝑡𝑖𝑒𝑠 

𝑆𝑢𝑟𝑣𝑖𝑣𝑎𝑙 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑟𝑒𝑑 𝑐𝑎𝑠𝑢𝑙𝑎𝑡𝑖𝑒𝑠 × 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝑟𝑎𝑡𝑒  𝑜𝑓  𝑟𝑒𝑑 𝑐𝑎𝑠𝑢𝑙𝑎𝑡𝑖𝑒𝑠 
 

 

We aim to allocate local medical teams to serious casualty groups in a CTS in a way to 

maximize the expected number of survivors. The formulation of basic model is as follows: 

 
Set and index 

T Set of time units within the planning horizon indexed by 𝑡  
K Set of casualty groups indexed by 𝑘 (𝑘 = 𝑟 for red group and 𝑘 = 𝑦 for yellow group) 

  

Parameters  

𝑇𝐶 The total number of casualties  

𝑒𝑘
𝑡  Treatment time of casualties of type 𝑘 at time unit 𝑡  

𝛾𝑘
𝑡  The ratio of casualties belongs to type 𝑘 at time unit 𝑡 (𝛾𝑟

𝑡 + 𝛾𝑦
𝑡 = 1)  

𝑣𝑡 The rescue rate of each USAR team at time unit 𝑡 

𝑚𝑘
𝑡  The treatment rate of each medical team for casualties from type 𝑘 at time unit 𝑡 

𝑝𝑘
𝑡  The survival probability of casualties of type 𝑘 if treated at time unit 𝑡  

𝑁𝑈𝑡 The total number of USAR teams available in the affected site at time unit 𝑡  

𝑁𝑀𝑡 The total number of medical teams available in the CTS at time unit 𝑡 
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Variables 

𝜆𝑘
𝑡  The number of medical teams assigned to casualties of type 𝑘 at time unit 𝑡 ∈ 𝑇 (𝜆𝑟

𝑡 + 𝜆𝑦
𝑡 =

1) 

𝑋𝑡 The number of casualties rescued at time unit 𝑡  

𝑌𝑘
𝑡 The number of transferred casualties of type 𝑘 to the CTS at time unit 𝑡  

𝑊′𝑡
 The number of yellow casualty group transferred to red triage group at time period t  

𝑊𝑘
𝑡 The number of untreated casualties of type 𝑘 at time unit 𝑡 

𝑆𝑘
𝑡  The number of casualties of type 𝑘 whose treatment starts at time unit 𝑡 

𝑍𝑘
𝑡  The number of treated casualties of type 𝑘 at time unit 𝑡 

  
Max 𝑍 = ∑ ∑ 𝑝𝑘

𝑡 . 𝑍𝑘
𝑡

𝑘𝑡                                      (1)          

S.T.  
𝑋𝑡 ≤ 𝑇𝐶                                           (2) 

𝑋𝑡 ≤ 𝑣𝑡 . 𝑁𝑈𝑡( ∀𝑡 ∈ 𝑇)                  (3) 

𝑌𝑘
𝑡 = 𝛾𝑘

𝑡 . 𝑋𝑡  (∀𝑡 ∈ 𝑇)                                                                         (4)   

𝑊𝑟
𝑡 = 𝑌𝑟

𝑡 + 𝑊𝑟
𝑡−1 + 𝑊′𝑡−1

− 𝑆𝑟
𝑡                                  (5) 

𝑊𝑦
𝑡 = 𝑌𝑦

𝑡 + 𝑊𝑦
𝑡−1 − 𝑊′𝑡−1

− 𝑆𝑦
𝑡       (∀𝑡 ∈ 𝑇)              (6) 

𝑍𝑘
𝑡 = 𝑍𝑘

𝑡−1 + 𝑆𝑘
𝑡 − 𝑆𝑘

𝑡−𝑒𝑘
𝑡

                               (7) 

 𝑍𝑘
𝑡 ≤ 𝑚𝑘

𝑡 . 𝜆𝑘
𝑡 . 𝑁𝑀𝑡(∀𝑡 ∈ 𝑇)                                                                            (8) 

𝑋𝑡 , 𝑌𝑘
𝑡 , 𝑍𝑘

𝑡 , 𝑆𝑘
𝑡 , 𝑊𝑘

𝑡 , 𝜆𝑘
𝑡 ≥ 0       (∀𝑡 ∈ 𝑇)                                                     (9) 

 

The objective function (1) maximizes the expected number of survivors. Constraint (2) 

ensures that the number of rescued casualties in the affected site cannot be more than the total 

number of casualties. Based on Constraint (3), the number of rescued casualties cannot be 

higher than the capacity of USAR teams. Constraint (4) determines the number of rescued 

casualties belonging to each triage group. The number of red casualties in each time unit 

(constraint (5)) is equal to the number of yellow casualties moved to the red group, plus the 

number of red casualties waiting from the previous period, plus the number of red casualties 

arriving at the CTS, and minus the number of red casualties already treated by the medical 

teams. Constraint (6) is the same as Constraint (5) but for yellow casualties. Constraint (7) states 

that the number of treated casualties in each time unit is equal to the sum of the number of 

treated casualties in the previous time unit and the number of casualties who started their 

treatment minus the number of casualties who ended their treatment. According to constraint 

(8), the number of treated casualties in each group cannot be more than the treatment rate of 

allocated teams. Constraint (9) denotes the nonnegative variables.  

A constraint is included in the model to formulate each DAS. 

 

Strategy 1:                   𝜆𝑟
𝑡 = (

𝛾𝑟
𝑡

𝛾𝑦
𝑡 ) . 𝜆𝑦

𝑡                                      (10) 

Strategy 2:                    𝜆𝑟
𝑡 = (

𝑚𝑟
𝑡

𝑚𝑦
𝑡 ) . 𝜆𝑦

𝑡                                        (11) 

Strategy 3:                  𝜆𝑟
𝑡 = (

𝑝𝑟
𝑡 .𝑚𝑟

𝑡

𝑝𝑦
𝑡 .𝑚𝑦

𝑡 ) . 𝜆𝑦
𝑡                                 (12) 

Strategy 4:                   𝜆𝑟
𝑡 = (

𝛾𝑦
𝑡

𝛾𝑟
𝑡) . 𝜆𝑦

𝑡                                     (13) 

Strategy 5:                    𝜆𝑟
𝑡 = (

𝑚𝑦
𝑡

𝑚𝑟
𝑡 ) . 𝜆𝑦

𝑡                                    (14) 

Strategy 6:                  𝜆𝑟
𝑡 = (

𝑝𝑦
𝑡 .𝑚𝑦

𝑡

𝑝𝑟
𝑡 .𝑚𝑟

𝑡 ) . 𝜆𝑦
𝑡                                  (15) 

 

Case study 
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In this section, the model performance is investigated through a case study from Kermanshah 

earthquake, 2017. The model is implemented using CPLEX solver of GAMS software. In 

Subsection 4.1, the values of main parameter are presented and the computational analysis is 

explained in Subsection 4.2. The sensitivity analysis and managerial insights are provided in 

Subsections 4.3 and 4.4, respectively. 

 

Data collection 

 

Kermanshah located in northeast of Iran experienced an extremely high 7.3 magnitude 

earthquake in November 2017. During this incident, 630 people died, more than 8,100 were 

injured, about 70,000 became homeless, and the main hospital of this province was destroyed 

(Haeri et al. [7]). Due to the significant level of threats in this area, existing four major faults 

(High Zagros Fault, Mountain Front Fault, Sahneh Fault and Morvarid Fault) are used as the 

case study in this work. The period of 12h after the disaster is considered and the length of each 

time unit is 15 minutes. The survival probabilities for red and yellow groups are calculated 

based on a three-parameter function adopted from Mills et al. [15].  

 

𝑝𝑟𝑘,𝑡 =
𝛽0,𝑘

(
𝑡

𝛽1,𝑘
)

𝛽2,𝑘
+1

                  (16) 

 

Because it is very difficult to estimate the parameters in the model accurately, the other 

parameters are adopted from the other papers (like Haeri et al. [7] and Liu et al. [13]) shown in 

Table 2.  

 
Table 2. The reference of key parameters. 

Parameter Reference 

𝑇𝐶 Estimated based on Haeri et al. [7] 

𝛾𝑟
𝑡 A number from interval (0,0.2] and 𝛾𝑦

𝑡 = 1 − 𝛾𝑟
𝑡 

𝑚𝑘
𝑡 , 𝑣𝑡 From the literature (Rezapour et al. [18] and Jin et al. [9]) 

𝑒𝑘
𝑡  From the literature (Rezapour et al. [18] and Jin et al. [9]) 

𝑁𝑈𝑡 , 𝑁𝑀𝑡 Based on some related studies in the literature (Tirkolaee et al. [24] and Liu et al. [13]) 

 

Computational analysis 

 

In this subsection, the results of the model for the proposed strategies are represented. The more 

the yellow treated casualties, the higher the objective function value. Because we want to 

consider both triage groups, another criterion is introduced. The criterion is the summation of 

the ratio of survivors to the triaged people in both groups (RST).  

 
Table 3. The results for different strategies.  

Strategy Objective Red group Yellow group RST 

1 1033.1 86.80 2025.0 1.296014 

2 732.30 186.5 1333.2 1.546730 

3 911.10 172.4 1716.2 1.628334 

4 158.00 186.5 171.30 1.070263 

5 610.00 186.5 1094.5 1.448842 

6 393.14 186.5 637.60 1.261526 

 

According to the comparison between the strategies, the third one has the best performance. 

This strategy has more RST compared to the other strategies. 
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Sensitivity Analysis  

 

In this subsection, the performance of the treatment strategies is analysed based on some key 

parameters. We consider ±20, ±10 errors in the values of three significant parameters: the 

ratio of triaged individuals and the treatment rate, and the rescue rate. 

The changes in 𝛾𝑘
𝑡  is analysed in Fig. 2.  When the ratio of triaged casualties is increased, 

the value of RST for strategies 1 and 3 is decreased. This is because the number of red and 

yellow survivors are, respectively, in a positive and negative relationship with the ratio of red 

and yellow triaged victims. In contrast, the value of RST for strategies 2, 4, 5, and 6 increases 

when the ratio of triaged individuals is increased. As the decrease in yellow survivors is greater 

than the increase in red survivors, the value of RST decreases. The errors in 𝛾𝑘
𝑡  have the greatest 

impact on strategies 2, 3, and 4. 

As can be seen in Fig. 3, increasing in 𝑚𝑘
𝑡  makes an enhancement in the number of survivors 

in both groups. Then, RST increases with the increase of these parameters. As the treatment 

rate increases, the number of casualties treated by each medical team also increases. The effects 

of changes in this parameter are obviously large for strategies 1 and 3. Strategy 4 is slightly 

affected by these changes. 

  

  
 

 

Fig. 2. The performance of strategies against variability of 𝛾𝑘
𝑡 . 
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Fig. 3. The performance of strategies against variability of 𝑚𝑘
𝑡 . 

 

Fig. 4 represents the errors in the rescue rate. Variation in this parameter variates the 

number of triaged cases. Thus, fluctuations are occurred in both the number of triaged 

casualties and the number of survivors with the increase in rescue rate See strategies 1, 2, and 

3 that behave the same versus 𝑣𝑡. Strategies 4 and 5 are more or less stable versus 𝑣𝑡. But, 

strategy 6 differs from the others: The value of RST decreases with the increase in the rescue 

rate since the number of triaged people is fixed (the number of medical teams is fixed). 

 

  

Fig. 4. The performance of strategies against variability of 𝑣𝑡 . 
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Managerial insights   

 

Considering only one triage group in time units is not fair. Although the treatment of red 

casualties takes a longer time than yellow casualties, neglecting a red casualty turns black which 

is more likely than yellow ones. On the other hand, treatment of red casualties makes the waiting 

time for the yellow group increase and they may turn red. Hence, the treatment rate, survival 

probability, and injured people in each group are the most important parameters affecting the 

assignment of resources to casualty groups. So, the allocation strategy is a key determinant of 

the number of survivors. The allocation strategy is a function of parameters shifting over time. 

Based on the numerical finding, the allocation of medical teams based on the third strategy 

overcomes other strategies. Changes in some parameters impact the performance of the 

strategies. This analysis makes some insights that is beneficial for decision-makers, 

summarized as follows: 

 Saving rate is an important measure for assigning medical teams to triage groups 

 Errors in the treatment rate affect the number of survivors in both groups. 

 Errors in 𝛾𝑘
𝑡  affect RST less than errors in 𝑚𝑘

𝑡 . 

 

Conclusion 
 

After a disaster, there are a large number of injured people in a short time and providing on-

time emergency medical aids is essential. In this paper, a mathematical model was developed 

for the allocation of relief teams to maximize the expected number of survivors considering the 

physical condition of casualties. Some strategies for allocating medical groups to the casualties 

in different triage groups were developed to consider both groups simultaneously. We involve 

the treatment rate, the ratio of casualty groups, and the survival probability in the proposed 

strategies. The objective function was increased when more yellow casualties are treated, 

because the yellow group has a more survival probability. Therefore, we compare the strategies 

using the ratio of survivors to triaged people in both groups. This criterion was the summation 

of ratios of survivors to triaged people (RST) in two groups. The results show that the medical 

teams can be assigned to the casualty groups based on the saving rate. Here, there are some 

suggestions for future research. A new direction can be to consider the uncertainty in some 

parameters. In addition, other objective functions can also be introduced into a multi-objective 

model.  
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