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Abstract  

The health service network has problems such as a shortage of medical equipment 

and human resources. Due to the need for high expertise in supplying these 

facilities, this problem is much harder to be solved than other industrial ones. In the 

COVID-19 pandemic, maintaining tranquility in society is the most important 

factor. The tranquility is obtained by providing medical facilities in the health care 

network. Also, the COVID-19 pandemic imposes new restrictions on the network 

because of preventive guidelines. In this situation, the problem of resource 

allocation will become more sophisticated and will reduce system efficiency. In this 

paper, the problem of transferring hospital beds to patients infected by COVID-19 

considering a predetermined capacity level is considered. To cope with these 

problems, a mixed-integer mathematical programming model is suggested. In 

addition, to consider the uncertainty in the demand of patients that occurs in the 

pandemic, the fuzzy programming approach is used. The suggested model is solved 

with the Benders decomposition algorithm (BDA) and applied for assigning beds 

in two samples. The results show that proper management of resources in crisis 

situations such as the COVID-19 outbreak is very effective. As a result, this issue 

causes to overcome pressure on medical staff and lack of hospital facilities, during 

pandemic conditions. 
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Introduction  
 

In December 2019, several patients were first diagnosed with an infectious disease in Wuhan, 

China, and reported to the World Health Organization [11].The disease, called COVID-19, 

spread rapidly throughout China and from China to other parts of the world. Given the 

advancement of medical science and the increasing access of all human societies to health in 

the 21st century, as well as the eradication of epidemic diseases, at least in the last hundred 

years, the occurrence and prevalence of pandemics such as COVID-19 seem unpredictable. 

Even after it happened, many countries did not believe in its occurrence and severity until the 

COVID-19 pandemic took an incredible toll. 

Although it was the site of the emergence of COVID-19 in Wuhan, China, in December 

2019, it quickly became a global pandemic, and on March 31, 2020, the United States of 

America surpassed China with more than 3,900 deaths. Even Italy and Spain surpassed China 

in terms of the death toll, as in the United States. In one of the COVID-19 pandemic centers in 
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northern Italy, the conditions of the healthcare system deteriorate. Equipment shortages went 

so far that doctors had to make impossible decisions about which patients to survive. Doctors 

who were involved in the treatment of patients were forced to consider factors such as age, 

underlying diseases, and weight regarding the possibility of people surviving to decide which 

patients to receive mechanical ventilation [21]. So, due to the large number of patients affected 

by the contagion of COVID-19 and the deterioration of many patients when referred, 

communities around the world faced a new challenge of scarce hospital equipment. The 

challenge of shortages of hospital equipment such as ventilators was partially offset by 

production with urgency. However, this method itself has problems such as lack of time, 

manufacturing machines and labor due to unpredictable conditions. Therefore, it is necessary 

to use the equipment in the best possible way to maximize the lifesaving rate of patients.  

 

Our contribution 

 

In response to the mentioned challenge, this research presents a mathematical model for 

creating a system to consider the allocation of patients as fair as possible with considering the 

distance of the hospital.  Achieving this goal prevents patients from concentrating in certain 

hospitals which reduces the rate of treatment and increases the rate of burnout of the medical 

staff and also provides a system for referring patients fairly to all existing hospitals, taking the 

patient's distance from the hospital as a factor. Also, the capacity of each hospital is considered 

as a decision-making variable that by considering the capacity occupied by the patients, the 

possibility of providing services to other non-emergency patients by each hospital is also 

determined. 

 

Organization 

 

This paper is organized into 5 sections. In Section 2, a literature review related to the subject is 

presented. In Section 3, the allocation model and handling of the uncertainty of the patient 

population are presented. Also, in Section 4, our solution approach and computational results 

in COVID-19 outbreak conditions are presented. In Section 5, the article will be ended with 

some concluding remarks. 

 

Literature Review  
 

The importance of the location of each facility which has an effect on the quality of presenting 

services is considered [14]. Scheduling  is considered for using equipment due to the lack of 

capacity in intensive care units of hospitals that is an important issue and should be considered 

in presenting medical services [12]. 

The allocation of equipment that is the main resource in the crisis was addressed and the 

deterioration of victims' health conditions has been modeled as a Markov chain. In this study, 

the rate of expected health improvement increased and reduced waiting time was considered 

[24]. The allocation of scarce medical resources after a crisis occurred is investigated with using 

event simulation [5]. 

Resource allocation was investigated in emergency situations within the framework of multi-

objective optimization and simulation [6]. Simulation and queuing models for hospital bed 

allocation was examined [23,8]. Optimal allocation of sanitary equipment in developing 

countries is employed [7]. The system modeling approach has been expressed to distribute 

influenza vaccines in pandemic conditions [2]. 

Kaplan addressed the effects of quarantine and compliance with other health protocols 

announced to prevent further COVID-19 outbreaks [13]. The allocation of ventilators in 
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emergency situations has been proposed [26]. Before the emergence and prevalence of COVID-

19, in a situation where the problem of the influenza pandemic had caused the need for 

ventilators, its demand in the United States was considered [15]. By strictly considering the 

scenarios of an influenza outbreak, it was estimated a need for 35,000-60,500 additional 

ventilators to avert 178,000-308,000 deaths. Robust models were studied [4].  They assess the 

lack of hospital staff with the aim of minimizing the impact of emergency situations . The effect 

of this approach was shown through experimentation and comparison with realistic data [4]. 

Huang et al optimized the storage of ventilators needed to treat patients with influenza 

alignment, in which they considered all possible pandemic conditions in the state of Texas [10]. 

However the distribution of ventilators is not considered while in the case of COVID-19, 

one of the essential issues is considering the distribution of the ventilator, which should be 

considered due to the peak or drop in the need at different times [10]. 

A hybrid approach was presented for routing and scheduling in home health care services 

[20]. The home health care industry which is necessary due to the lack of beds in hospitals and 

the danger of getting involved in hospitals is assessed [16]. This method is also useful for 

diseases like COVID-19 although it was presented for all the patients who can be at home and 

don’t need scarce equipment. A multi-objective optimization approach to resource management 

in crisis scenarios in uncertain situations was presented in 2021 [9]. 

A dynamic operating room scheduling model was offered [27]. In this paper, a model for 

scheduling and sequencing the assignment of the operating room to surgeons is considered. To 

solve the model, a hybrid metaheuristic of Grey Wolf Optimizer (GWO) with Variable 

Neighborhood Search (VNS) was applied. There is a research gap to model dynamic emerging 

situations of COVID-19 due to a robust approach aimed at providing fast and efficient responses 

to pandemic situations reviewed [25]. The problem of activating and assigning rooms to the 

COVID-19 patients and emergency patients, and also scheduling the operations of these 

patients is studied [1]. 

 
Table 1. comparison of studies conducted in different researches  

reference 
X-

objective 
Model 

Uncertainty 

handling 

Solution 

method 

Case 

study 
Scheduling Routing Location Allocation 

COVID-

19 

Mahmoodzade 

et al. (2015). 
Two MIP - Lingo Tehran   *   

Feng et al. 

(2017) 
Multi MIP - 

Genetic 

Algorithm 
Taiwan    *  

Jafari 

eskandari et 

al. (2018) 

Single MIP - GAMS - *     

Zhu et al. 

(2020) 
Single MIP - 

Hybrid 

metaheuristic 
China *     

Hallaji and 

Ramezanian 

(2021) 

Single MIP - GAMS Tehran * *  *  

Mirabnejad et 

al. (2021) 
Single MIP - 

Genetic 

Algorithm 
- * *    

Hernández-

Pérez (2021) 
Multi MIP * GAMS USA    * * 

Arab Momeni 

et al. (2022). 
Single MIP * GAMS Tehran *    * 

This study Single MIP * 
Benders 

decomposition 
-    * * 

 

Based on the literature review, we present research gaps that justify the motivation for the 

present study.  Modeling in COVID-19 pandemic conditions with the aim of creating 

effectiveness as a basic need should be considered. At the same time, developing a fuzzy 
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programming approach, which can take into account the degree of deviation from facilities in 

hospital resources and provide the possibility of managing hospital beds in COVID-19 

pandemic conditions, is considered a research gap that provides valuable insight into the 

management of hospital resources dynamically.  

In addition, it has been tried to consider dependence on medical resources in the proposed 

model. Finally, in this paper, decisions will be made in time periods (days), under uncertain 

demand conditions. Our model is formulated as a fuzzy programming model, and the developed 

model will be solved in its uncertain form of demand. 

The main contributions of this research that makes it different from the other papers could be 

summarized as follows:  

 The model considers expanding all the hospitals in the network with attention due to 

budget constraints. This feature creates a real-world adaptation to the model due to the 

importance of expanding capacity as soon as possible in the pandemic situation which 

should be able to respond to the demand that is not expectable. 

  The objective function is oriented toward preventing capacity completion from the 

specified limit, as much as possible to improve the quality of health care services. 

 Paying attention to the patient's distance from the hospital is considered a parameter in 

the model which is not the main goal and so it is considered a facilitator factor.  

 Applying the uncertainty programming method (i.e. the fuzzy programming approach) 

to cope with the source of uncertainty which is the demand. 

 Developing Benders decomposition method for solving mixed-integer linear 

programming (MILP) in large-scale problems. 

 

Problem Definition and Mathematical Modeling 
 

It should be noted that in times of crisis epidemic outbreak, the possibility of community 

involvement is exponentially high and as a result, the number of patients is increasing compared 

to normal conditions. Therefore, it is necessary to use the equipment in the best possible way 

to maximize the lifesaving rate of patients which is considered in our study that is what we will 

assess below.  

In general, in crisis situations, patients referred to the hospital have three physical conditions. 

First, patients with “normal” symptoms can be hospitalized at home and only due to epidemic 

conditions of the disease need to be quarantined to avoid the spread of COVID-19 to others. 

Second, patients with “serious” symptoms who have special physical conditions and it is 

necessary to be admitted to the normal ward of the hospital before their conditions become 

acute. Third, patients who come to the hospital with “acute” physical conditions and therefore 

it is necessary to use special hospital equipment due to their high risk and thus be admitted to 

the intensive care unit. According to the mentioned classification, patients with critical 

conditions need a hospital intensive care unit and special equipment. Due to the lack of facilities 

in the intensive care unit of hospitals in pandemic conditions and the importance of providing 

facilities to patients with acute conditions to better care for them, this issue has been 

investigated in this article. Fig. 1 illustrates the structure of the problem. 
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Fig. 1. The structure of problem 

 

In such critical situations, due to the completion of hospitalization capacity and lack of scarce 

equipment in many hospitals, patients were forced to receive health care services with reduced 

quality and also even forced to go to multiple centers to find hospitals with empty capacity. 

This challenge endangers the safety of society both in terms of physical and mental health. So 

that the allocation of patients in a fixed percentage of capacity occurs in all hospitals and if 

there is still patient, allocation of patients to the capacity of the hospital is done. Considering 

this goal indirectly determines the possibility of hospitals serving other patients such as non-

urgent patients in each period. 

In critical situations, it is sometimes necessary for hospitals to allocate the capacity of other 

wards that are not in the priority of treatment to patients involved in the pandemic, which is 

considered by defining capacity as a variable and not an input parameter with the maximum 

possible. 

On the other side, preventing the movement of people with symptoms of the disease in the 

city, despite the capacities being completed, can cause mental relaxation at the community level 

and also prevent the spread of the virus in the community. Hence considering the radius of 

coverage of patients simultaneously with other factors is very important to manage the 

allocation of patients to hospitals and in our research, paying attention to the patient's distance 

from the hospital is considered a parameter in the model. As a result of modeling this condition, 

the health care network that refers the patients to the hospitals directly, can be obtained. 

 

Assumptions 

 

The assumptions used for formulating the mathematical model are, as follows: 

 The population classification of patients in each period is based on the location where 

they are located so that the patient can be assigned to available medical centers in terms 

of location as a goal and also be able to calculate the coverage radius. It is assumed that 

the patient population of each area is located in the center of that area. 

 All patients can be referred to a single hospital. 

 The number of direct visits to each hospital is assumed to be one for each patient from 

location h in period t. 

 The gradual coverage is defined by taking circles to a radius of 
min

i  and 
max

i ( minimum 

and maximum coverage radius of hospital (i) ) to the centrality of each hospital. In this 

definition, if the patient is placed inside the circle with a smaller radius, the amount of 

radius coverage equals one and in the case of being outside the larger radius, the amount 

of coverage equals zero and if placed in the outside area of the smaller circle and inside 

the larger circle is calculated linearly based on formula (1a) (Berman et al., 2003). if 
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parameter hi
 stands for the distance between the patient zone (h)  and the hospital (i), 

then the coverage score of hospital (i) for the patient zone (h) which is shown by ( hia  ), 

could be calculated as follows: 

 


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(1a) 

 

Now, according to the defining hia   , definition of the binary parameter of the coverage score 

is as follows: 
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
0
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(1b) 

 

Mathematical model 

 

The notations used in the mathematical model for designing a health care network are as 

follows: 

 
Indices and sets: 

HIIiHh  ;,  
The set of patient zone and hospital locations respectively 

Ttt ,  
The set of periods 

 

Parameters: 

ite
 

Capacity expansion cost of hospital i at period t (per unit) 

ito
 

Operating cost of hospital i at period t (per unit) 

htp
   

population of the patient zone h at period t        

iv
 

Maximum allowable percentage of admission to hospital i  

tb
 

Available budget at period t 

ii ul ,
 

Minimum and maximum number of beds for allocating at hospital i 

hia
 

Binary parameter indicating point h is covered by a hospital at point i or not 

M                       Relatively large number 

 

Variables: 

ity
 

Binary variables indicating capacity expansion of hospital i at period t 

itc
 

Operating capacity of hospital i at period t 

e

itc
 

The amount of capacity expansion of hospital i at period t 

hits
   

Binary variables implying assignment of patients at patient zone h to hospital i at 

period t 

hitq
 

The flow of patients from patient zone h to hospital i at period t which is lower than 

iv
 percent of the hospital capacity 
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hitq
 

The flow of patients from patient zone h to hospital i at period t which is upper than 

iv
 percent of the hospital capacity until the completion of capacity 

 

The model is designed in such a way that in t=0, the corresponding binary variable value of 

existing operational hospitals is equal to one and the corresponding continuous variable is equal 

to the positive value. Also, if the goal is to create a network from the beginning, the initial value 

of all decision variables in t=0 is equal to 0. 

Considering the notations, the mixed-integer non-linear programming (MINLP) model of 

the concerned problem is as follows:  

 

Max 
 

h i t

hit

h i t

hit qq

 
(2) 

s.t.  

 iti
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Objective function (2) is developed to maximize the total flow of patients from patient zone 

h to hospital i at period t which is lower than iv
 percent of the filled hospital capacity so that as 

long as there is no need, the patient will not be allocated more than the specified limit.  

Constraint (3a) creates the condition that the allocation exceeds the specified limit ( iv
) if 

this is possible in terms of the number of patients. Constraint (3b) controls patient allocation to 

hospitals until capacity completion if needed. The reason why Constraints (3a) and (3b) are 

discrete is the priority of handling possibility of the capacity completion which is the main aim 

of the objective function. Constraint (4) calculates the capacity of each hospital, in each period. 

Constraint (5) put a limitation on the hospital capacity. Constraint (6) indicates that hospital 

capacity can be expanded in this period. Constraint (7) ensures that the patient zone should be 

assigned to the hospitals. Constraint (8) indicates that a flow of patients between two points in 

the network can happen if the point of the patient zone is located in the hospital coverage radius. 

Constraint (9) indicates that in each period, the total flow of patients from each patient zone to 

all of the hospitals is lower than the all of the population of patients which we call it pht. 

Constraint (10) ensure that the total cost of expanding the capacity of hospitals, cannot exceed 



222  Akhavi et al. 

the cumulative budget until the end of each period. Constraint (11) creates the relation between 

hithit qq ,
 and the corresponding binary variable of them ( hits

). Constraint (12) also creates the 

relation between 
e

itc
 and the corresponding binary variable of it which is called ( ity

). 

 

Linearization 

 

The obtained model due to the product of a continuous variable in a binary variable in constraint 

(10) is a mixed-integer non-linear programming and according to the nonlinear nature, it is 

possible to be linearized that is explained [3]. It is enough to put: 

 

0 itit

e

it yc 
     

0,  ti
 

(13) 

 

Constraint (10) will be rewritten as follows: 
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
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t
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0t  (14) 

e

itit c
 

0,  ti
 

(15) 

itit yM *
 

0,  ti
 

(16) 

)1( it

e

itit yMc 
 

0,  ti
 

(17) 

 

According to the above constraints, we've been able to equate the mixed-integer nonlinear 

programming with the mixed-integer linear programming which has an objective function as 

follows: 

 

Max 
 

h i t

hit

h i t

hit qq

 
(18) s.t. 

 
Constraints (3a), (3b), (4)-(9), (11), (12), (14)-(17) 

 

 

A possibilistic programming approach 
 

For handling both epistemic uncertainty in input data and elasticity in constraints and/or 

flexibility in goals, the fuzzy programming approach is applied. Fuzzy mathematical 

programming is divided into two main categories: (1) possibilistic programming and (2) 

flexible programming [17,18]. The possibilistic programming approach controls epistemic 

uncertainty in input parameters due to lack of knowledge and/or even due to using the historical 

data, that have the dynamic nature. On the other hand, the flexible programming approach copes 

with soft constraints and flexibility on the target values of goals. As fuzzy programming 

approach is appropriate approach for handling the uncertainty that the exact value of parameter 

is not available and only the approximating as a triangular number for the population of the 

patients is accessible. Due to the nature of COVID-19 that is an unknown phenomenon, the 

possibilistic programming approach is consistent with the concerned problem. 

In detail, let us assume the following fuzzy model including imprecise parameters: 
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Max cxz   

(19) s.t. 

 bAx
~

  0x  

where x  denotes decision variables and c ; A; b
~

 are model parameters. It is assumed that 

parameter b  is tainted with uncertainty.  

The possibilistic chance-constrained programming (PCCP) approach requires that the 

decision makers (DMs) be able to declare the minimum level of proper satisfaction for each 

possibilistic chance-constraint [19]. In this paper, the necessity measure instead of possibility 

is used because it's stricter than other measures to handle of healthcare network epistemic 

uncertainty which is related to the society health status and actually in emergency cases that is 

dealing the human lives. Now, by having the following model:  

Max cxz   

(20) s.t. 

    bAxNec
~

 0x  

The crisp counterpart of model (18) is as follows: 

Max cxz   

(21) s.t. 

 LbAx   0x  

In the crisp counterpart of model (21), as an assumption, the uncertain parameter b
~

 has 

triangular fuzzy parameter and could be represented LR fuzzy number: b = b ,b , L , R . 

In this paper the population of the patient zone h at period t ( htp ) is regarded with epistemic 

uncertainty and could be represented htp = 
ht

p , htp , htpl , htpr . Parameters 15.0   

correspond to minimum confidence level of uncertain parameters of constraint. DMs determine 

value of minimum confidence level of uncertainty parameters base on their risk aversion. 

Increasing confidence level leads to maximum risk aversion of output decisions of model. In 

detail, according to the above mentioned, the model will be rewritten eventually as follows: 

Max  
h i t

hit

h i t

hit qq  (22) 

s.t.    

 )*()( hththit

i

hit plpqq   ti,  (23) 

 Constraints (3a), (3b), (4)-(8), (11), (12), (14)-(17). 

 

Solution Approach 
 

In this section, a Benders decomposition algorithm is developed for solving large scale Mixed-

integer programming (MIP) problems. BDA was first introduced by Benders (1962). In BDA, 

the master problem is decomposed into a problem which is called a relaxed master problem 

(RMP), and a linear problem which is called a sub-problem (SP). The feasible space of the 

primal SP is dependent on the given values of binary variables which is not suitable for handling 

the SP. For this reason, the sub-problem is dualized and its solution generates coefficients for 
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inequalities known as Benders optimality cuts or feasibility cuts in the RMP. An optimal dual 

sub problem (DSP) generates coefficients for an optimality cut, while if it is infeasible, then a 

feasibility cut is generated. RMP and DSP find the lower and upper bounds for the optimal 

value of the problem, which improves in different iterations until they converge to the optimal 

value or an early stopping criterion is reached. Clearly, the Benders decomposition is successful 

if it completes the solution much earlier than the total number of master problem solution points. 

To implement a BDA, it is necessary to formulate the DSP and RMP first and the compact form 

of the master problem is considered. The Benders primal sub-problem (PSP) is formulated as 

follows: 

 

Max 
 

h i t

hit

h i t

hit qq

 (24) 
s.t.   

 Constraints (3a), (3b), (8), (9),(11)  

 

Let consider the variables to the fixed values 
),,,( e

it

e

ititititithithit ccccyyss 
 so that 

they can be applied to the constraints of the RMP. If   represent the dual variables of the 

constraints of Benders PSP, then the DSP, is formulated as follows: 
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Now, according to the obtained solution of DSP, the RMP is represented as follows: 
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Optimality cut: 
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 Constraints: (4), (5), (6), (7), (12), (14)-(17)  

 

The RMP and DSP give an upper and lower bound for the objective function of the master 

problem at each iteration respectively. The solution which is resulted from DSP and also 

modifies DSP, are indicating extreme points and extreme rays that are needed to find optimality 

cuts and feasibility cuts. In the RMP, Constraints (29) and (30) represent feasibility and 

optimality cuts. Although considering the upper and lower bounds at the beginning of the BDA 
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can lead to a rapid reach of the optimal value, but due to the difficulty of defining a tighter 

interval, they are usually considered  and  , respectively. 

In the initial form of BDA, a large number of algorithm iterations are usually needed to 

achieve convergence, especially when MIP is complex, so several strategies have been 

proposed by researchers to accelerate the implementation of the algorithm in the literature. Here 

one of them which is the valid inequalities, will be mentioned. 

 

Valid inequalities 

 

For avoiding slow convergence of the BDA which is because of the low quality of the RMP 

solution in the initial iterations of the algorithm, some inequalities may be added to the RMP. 

These valid inequalities restrict the feasible region. Also, these valid inequalities have the 

feature of creating the equivalent model relative to the main problem [22]. These inequalities 

obtain from useful information that is from the concept of the problem. Therefore, according to 

the defined problem, it is necessary that patients first be within the hospital coverage radius, 

Constraint (31) can be defined. According to this constraint, if the patient is not within the 

radius of hospital coverage, allocation to that hospital is not done. Because of considering the 

coverage radius of each hospital in Constraint (8) in the base model, Constraint (31) can act as 

an accelerator in solving the model: 

 

hithi sa 
 

tih ,,  (31) 

 

Implementation and validation 

 

The obtained mixed integer linear programming model was implemented using the GAMS 

software version 24.2.1 in a personal computer with a processor of 2 GHz and 4 GB of RAM 

using the syllable solution method. In order to validate the model and to get a logical answer 

from the constructed model, two numerical examples are designed. 

In the first designed example, 20 locations for COVID-19 patients and 20 hospitals in 

different locations with a maximum operating hospital capacity equal to 220 are considered. In 

this example, 60 periods (days) are considered to show the changes in patients' conditions and 

capacity. The amount of available budget in each period in this example is 20 thousand million 

Toman. In Table 2, the other parameters of the problem are also introduced. 

 
Table 2.The value of model parameters 

Quantity Symbol 

Uniform (1,8) ito
 

Uniform (2,6) ite
 

0.8*Uniform(10,560) 
ht

p
 

0.88* Uniform(10,560) 
htp

 

0.08* Uniform(10,560)  htpl
 

0.16* Uniform(10,560)  htpr
 

0.8 iv
 

0.5   
100,000 M 
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iv
, maximum allowable percentage of admission to hospital i, is considered 0.8, which is 

proposed as a confident value for each period to prevent a lack of the capacity which needs for 

emergency situations and to increase the rate of recovery which directly depends on the rate of 

bed occupation in hospitals. By placing the coverage radius as a binary random number, 

indicating the possibility or impossibility of allocating patients to active hospitals, the input 

parameters of the model were completed. The existing model is solved with and without BDA 

in The GAMS software. As it is obvious, the objective function value was 272.76. This value 

was obtained without using BDA in 6:04 minutes, but using BDA in 18 seconds and in two 

iterations. 

In the second numerical example, for better representation of convergence resulting from the 

implementation of BDA and also the alteration in capacity expansion, the problem is performed 

for 90 locations for COVID-19 patients and 12 hospitals in different locations with maximum 

operating hospital capacity that is equal to 220 in 60 periods (days).it should be noted that some 

hospitals are not activated because of defining the coverage radius. In each period the budget is 

5000, and the following results showed convergence to the objective function of 38,654.81 that 

is obtained after seven iterations which the details are mentioned in Table 3. 

 
Table 3. The lower bound and upper bound of the optimal solution. 

Iteration Lower bound Upper bound 

iter1  41,043.06 

iter2 12,144.00 39,933.37 

iter3 12,144.00 39,398.90 

iter4 22,000.00 38,890.25 

iter5 25,872.00 38,726.82 

iter6 27,104.00 38,654.81 

iter7 38,654.51 38,654.81 

 

The overall results of each iteration can be seen in Fig. 2. 

 

 
Fig. 2. Convergence of BDA implementation 

 

As a result, in all periods, it has been tried to complete 80% of the hospital capacity and if 

necessary, the rest of the capacity is completed. According to the amount of budget in each 

period and the number of patients, there are changes in the capacity of hospitals, for example, 

hospital 1 in the 46th period needs to increase the capacity from 102 to 220, which is the 

maximum possible amount. Two samples of these capacity changes in different periods are 

shown in Fig. 3. 
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Fig. 3. Alteration of hospital capacity 

 

As can be seen in Fig. 4, hospitals in different periods need to expand their capacity to better 

cover COVID-19 patients. As is evident from Fig. 4, as an example of cases, it can be seen that 

hospital “7” needed to develop its capacity in the 53rd period. It should be noted that as a 

management result before this expansion, the hospital capacity in intensive care units, can be 

used for other non-COVID-19 patients. 

 

 
Fig. 4. Capacity expansion quantity 

 

Conclusion Remarks and Suggestions  
 

In this paper, a mixed-integer non-linear programming model is developed for solving the 

concerned problem which then became its equivalent linear form to be solved efficiently. The 

model incorporates prominent decisions, i.e. the initial capacity and the expansion over the 

planning horizon, proportional to the budget which was shown in the results. The objective 

function prevents concentrating patients in some special hospitals by allocating capacity up to 

a pre-specified percentage. This situation increases the quality of health care services and as a 

result, it increases the satisfaction level of the health network in the community and, also leads 

to the satisfaction of the medical staff.  For dealing with the epistemic uncertainty of demand 

in pandemic outbreak, a possibilistic programming approach is applied. Since the model 

includes one objective function, we have proposed an improved BDA which enhances the 

performance of the solving on large scales significantly. Also, validation is provided to illustrate 

the performance of the solution methodology. As a suggestion, a scenario-based formulation 

could be provided to enhance the resilience against probable disruption risks which occur in 
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pandemic situations. Also, other objectives could be regarded, i.e. considering the 

fully/partially radius coverage as an objective function. At the end of the pandemic due to 

factors such as general vaccination, equipment such as ventilators are useless. So it is a basic 

requirement to manage in a way that equipment can cover peak conditions and also provide 

reasonable preparations such that considering the fine in the objective function which is 

considering the conditions of the post-pandemic period. Also, the compulsion of the model to 

send a certain number of patients to medical centers can be considered in studies, as has been 

the case with regard to the establishment of health networks in previous research. 

 

Managerial insight 

 

As assigning scarce hospital equipment is a vital requirement that has an effect directly on the 

recovery rate, the lack of equipment for the future should be considered. The first step is 

estimating the deficiency in each period which is obtained from solving the model. Therefore, 

if it is possible, the budget, the producers and the apparatus should increase to supply the scarce 

equipment to prevent occurring a disaster. It should be noted that supplying equipment is a 

time-consuming process and estimating the deficiency is essential for overcoming it. On the 

other hand, in all the periods there are non-COVID-19 unwell patients who cannot wait and 

should be treated or determined. So estimating the equipment needed for COVID-19 patients 

can also determine the possibility of providing services in each hospital for these emergency 

patients. Finally, as a result of this study, the intending for the future and creating a service of 

referring patients to hospitals with the aim of preventing the concentration of patients in a few 

special hospitals is obtained and could be applied.   
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